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Summary

The scope of this talk is:

• to present state-of-the-art research covering a variety of 
concepts on performance of large scale distributed 
systems such as grids and clouds,

• to present resource management issues that must be 
addressed in order to make grids and clouds viable for HPC, 

• to provide future trends and directions in the large scale 
distributed systems area. 



Presentation Structure

• Grid Issues - Cloud Issues
– Performance Evaluation 

– Resource Management and Scheduling

– Complex Workloads

• Conclusions and Future Direction



• Parallel computers used in HPC are not always sufficient 
to cope with resource intensive scientific and commercial 
applications.

• Grids have emerged as an important infrastructure for 
serving demanding jobs and evolved to become the 
basis of Cloud computing.

Grid Issues - Cloud Issues I



• Computational and data grids and clouds are large-
scale distributed systems used for serving very 
large and complex applications.

• Grids and Clouds performance became more important 
due to the tremendous increase of users and 
applications.

Grid Issues - Cloud Issues II



Important issues that must be addressed:

• Efficient scheduling, 
• Resource management, 
• Load balancing, 
• Energy efficiency, 
• Reliability, 
• Security and Trust, 
• Cost, 
• Availability, 
• Quality of Service. 

Grid Issues - Cloud Issues III



Fig. 1.
HPC systems 
categories and 
attributes.

Source: H. 
Hussain et als., A 
survey on resource
allocation in high
performance
distributed
computing
systems, Parallel 
Computing, Vol. 
39, Issue 11, 2013, 
pp. 709–736.

Grid Issues - Cloud Issues IV



The main idea of Grid Computing:

• To use a large number of distributed high-performance 
computational resources while minimizing the related 
operating costs 
in order to solve complex and computationally 
demanding problems that practically could not be 
solved on a single resource.

Grid Computing I



Fig. 2. A model of grid computing system.
Source: H. Hussain et als., A survey on resource allocation in high
performance distributed computing systems, Parallel Computing, 
Vol. 39, Issue 11, 2013, pp. 709–736.

Grid Computing II



• In such a dynamic, distributed computing environment, 
where resource availability varies dramatically, efficient 
resource allocation and job scheduling are essential. 

• Grid scheduling manages the selection of the 
appropriate sites and resources for jobs, the allocation of 
jobs to specific resources and the monitoring of jobs 
execution. 

Grid Computing III



• A grid system following a hierarchical 
architecture is organized at multiple levels:

– At the grid level, a grid scheduler selects the 
appropriate sites for jobs

– At the in-site local level, local schedulers allocate jobs 
to specific resources.

• Scheduling techniques should perform efficiently 
across several metrics that represent both: 

– user and system goals.

Grid Computing IV



Grid Computing V

• The usage of energy has become a major concern for 
grid and cloud computing since the price of electricity has 
increased dramatically. 

• The energy consumption is a metric aiming at 
diminishing the energy consumption of computations. 

• This metric is always used in multi-criterion optimization 
problems, otherwise all the jobs would be scheduled 
sequentially on the most energy efficient machine.



Grid Scheduling I

• Scheduling in grid systems has been a major 
research goal for many years. It has been 
demonstrated that:

– Scheduling has a substantial impact on grid systems 
performance. 

– It can preserve individual application performance     
so that certain jobs do not suffer from large delays.

– Simulation models are used to evaluate performance 
of the policies.



Grid Scheduling II

Grid Scheduling:
Grid-Level Scheduling
Local-Level Scheduling

Parallel Job Scheduling
BoT Scheduling
Gang Scheduling
DAG Scheduling
Real-Time Scheduling
Fault-Tolerant Scheduling



Grid Scheduling III

• Grid systems usually have a hierarchical architecture, 
consisting of:

•
– A global, Grid Scheduler, that is in charge of resource discovery 

and allocation, and job execution management over multiple 
sites.

– Local Schedulers, which are responsible for the local 
scheduling of the jobs allocated to the particular site by the Grid 
Scheduler.  

• At each site, both grid jobs and local jobs compete for 
the same resources.



Grid Scheduling IV

Fig. 3. A Grid Computing System
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Grid Scheduling V

• Each site consists of a number of processors and a Local 
Scheduler (LS).

• When a job departs from GS, it arrives at the LS of the 
selected site. 

• The LS submits the job to a processor according to a 
policy. 

• Each processor has its own queue, and a job enters the 
queue if the processor is busy.



Grid Scheduling VI

Because of the nature of grids, there are important issues that 
must be addressed:

• Efficient scheduling
• Load balancing. 

Heterogeneity problems

• Efficient scheduling was already difficult with 
homogeneous machines

• In heterogeneous systems, it gets worse – new models 
are required. 



Grid Scheduling VII

Scheduling algorithms usually have to deal with two 
issues: 

• Resource assignment which refers to the selection of 
resources on which each job is assigned. 

• Queue ordering which refers to the order in which jobs 
are assigned to resources



Grid Scheduling VIII

Grid scheduling manages:

• the selection of resources for a job, 
• the allocation of jobs to resources
• and the monitoring of jobs execution.

In a grid system where two different job types exist, 
grid jobs and local jobs, scheduling becomes 
much more challenging.



Grid Scheduling IX

• Effective load distribution is of great importance at grids 
as it results to lower response times of jobs and fairness 
in utilization among the heterogeneous sites. 

• All types of jobs (local and grid jobs) must be served as 
soon as possible, utilizing all the available resources, 
achieving a high degree of load balancing among the 
sites.

• Load balancing algorithms can be static or dynamic. 



Grid-Level Scheduling Policies I

• Random:

– When there is a job arrival, the Grid Scheduler selects 
randomly one of the sites and dispatches the grid job 
to the particular site. In this case the Grid Scheduler 
queue is not used.



Grid-Level Scheduling Policies II

• Deferred:
– The Grid Scheduler receives feedback from the Local 

Schedulers regarding their load. This feedback is sent at a 
specified time interval, which is called allocation interval.

– When there is a job arrival, the Grid Scheduler stores the job  in 
its queue and scheduling is deferred. The jobs are dispatched 
from this queue at the end of each allocation interval.

– For each job, the site with the minimum load is selected. 
Therefore, load balancing is achieved.

– The drawback of this policy is that grid jobs are delayed in the 
Grid Scheduler queue, due to the postponement of the 
scheduling process.



Grid-Level Scheduling Policies III

• Hybrid GS:

– The Hybrid policy is more composite, which combines the 
Random and Deferred policies (S. Zikos and H. Karatza, 2008).

– There still exists the concept of Allocation Interval in which the 
scheduling is deferred until information from sites becomes 
available. 

– The problem with the Deferred policy is the long delay of jobs 
that arrive at the beginning of the Allocation Interval in GS. 
Perhaps it’s better to route these jobs to a less “good” site with 
zero delay in the GS’s queue. This is the case of Random policy. 



Grid-Level Scheduling Policies IV

• Hybrid GS cont.

– On the other hand, jobs that arrive in shortly before the end of
interval benefit from the best site selection which compensates 
the delay in queue. This is the Deferred policy part.

– The question here is when the GS changes policy, from Random 
to Deferred. A parameter (A_I%) is introduced which shows the 
percentage of Allocation Interval in which the Random policy is 
used.

– If a job arrives beyond the threshold that A_I% defines, then the 
GS operates according to Deferred policy. 



Grid-Level Scheduling Policies V

Fig. 4. GS operation when Hybrid_GS policy is used with A_I% = 0.5
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Grid-Level Scheduling Policies VI

• Real-Time:
– Like Deferred policy, the Real-Time policy is based on 

information about each site’s load. However, in this case 
scheduling is not deferred and the Grid Scheduler has 
updated load information at every job arrival. When a job 
arrives, the Grid Scheduler allocates it to the least loaded 
site without delay.

– This scenario is practically unachievable as the overhead 
from the continuous feedback traffic would be enormous. It 
is impossible for the Grid Scheduler to know exactly what 
is happening to a large number of remote sites. However, 
this Real-Time policy is often used for comparison 
purposes.



Grid-Level Scheduling Policies VII

When the optimal percentage of the allocation interval is 
applied, the Hybrid GS is approaching the Real-Time GS 
policy in performance. 



Grid-Level Scheduling Policies VIII

• References:

– S. Zikos and H. Karatza, “Communication Cost Effective Scheduling Policies of 
Nonclairvoyant Jobs with Load Balancing in a Grid”, The Journal of Systems and 
Software, Elsevier, Vol. 82, issue 12, 2009, pp. 2103-2116.

– S. Zikos and H. Karatza, “The Impact of Service Demand Variability on 
Resource Allocation Strategies in a Grid System”, ACM Transactions on 
Modeling and Computer Simulation (TOMACS), Vol. 20, Issue 4, Article No. 19, 
October 2010, pp. 19:1-19:29.

– S. Zikos and H.D. Karatza, “Resource Allocation Strategies in a 2-level 
Hierarchical Grid System”, Proceedings of the 41st Annual Simulation 
Symposium (ANSS), IEEE Computer Society Press, SCS, April 13-16, 2008, 
Ottawa, Canada, pp. 157-174.

– S. Zikos and H. Karatza, “Clairvoyant site allocation of jobs with highly 
variable service demands in a computational grid”, to appear in the 
Proceedings of the 9th International Workshop on Performance Modeling, 
Evaluation, and Optimization of Ubiquitous Computing and Networked Systems 
(PMEO-UCNS'10), in conjunction with IPDPS 2010, April 19-23, 2010, Atlanta, 
GA. 



Local-Level Scheduling Policies I
Resource assignment

– At each site, the Local Scheduler schedules both the 
local and grid jobs according to a specified 
scheduling policy.

– Local and grid jobs may consist of a single task or 
multiple tasks. 

– Depending on job characteristics, various types of 
scheduling policies can be employed in each site. 



Local-Level Scheduling Policies II
Resource assignment

• Random LS
Each LS randomly selects one of the processors to execute a job.

• Shortest Queue LS
A LS uses information about the number of jobs in each local queue 
and selects the processor with the least number of jobs waiting in 
queue. In case there are two empty queues, the idle processor is
selected.

• 2 Random – Shortest Queue LS
Two random processors are selected initially, and then the Shortest 
Queue policy between these processors is applied. In 
[Mitzenmacher, 2001], it is proven that two choices, instead of one, 
offer exponential improvement in a job’s response time in various 
models. 



Local-Level Scheduling Policies III
Resource assignment

• M. Mitzenmacher, “The Power of Two Choices in 
Randomized Load Balancing”, IEEE Transactions on 
Parallel and Distributed Systems, Volume 12 ,  Issue 10, 
(October 2001), pp. 1094 – 1104, 2001.

• S. Dimitriadou and H.D. Karatza, “Multi-Site Allocation Policies on 
a Grid and Local Level”, Proceedings of the Fourth International 
Workshop on Practical Applications of Stochastic Modelling
(PASM’09), (Mascots 2009 Workshop), 24 Sept. 2009, Imperial 
College, London, Elsevier's ENTCS (Electronic Notes in Theoretical 
Computer Science). 



Local-Level Scheduling Policies IV
Resource assignment

• Implementing migrations is a strategy used for dynamic load 
sharing.

• Migration enables us to dynamically adjust the schedule and 
rearrange jobs in the queues.

• In heterogeneous multi-cluster systems the need of migration 
for load balancing purposes is necessary since the load of 
each cluster might differ in time.

• It is a complex procedure which involves overheads. 
Therefore, it should be employed with caution in order to be 
beneficial.



Local-Level Scheduling Policies V
Resource assignment

• FCFS scheduling policy
FCFS ensures certain kind of fairness, does not require in advance 
information about job execution time, does not require much 
computational effort, and is easy to implement.

• Shortest-time-first
This policy assumes that a priori knowledge about a task is available 
in form of service demand. However, a priori information is not often 
available and only an estimate of job execution time can be 
obtained. 

This method is not fair to jobs with large service demands. For this 
reason modified versions are used which limit the number of times 
a large job can be bypassed by smaller jobs.



Parallel Job Scheduling

• A job may consist of independent tasks which can be 
processed in parallel (Bag-of-tasks Scheduling).

• A job may consist of frequently communicating tasks which 
can be processed in parallel (Gang Scheduling).

• A job may be decomposed into a collection of tasks with 
precedence constraints among them. These tasks may be 
scheduled on different nodes of the system (DAG 
Scheduling).

• Composite jobs may have end-to-end deadlines (Real-
Time Scheduling).

• Software failures may occur during the execution of a job 
(Fault-Tolerant Scheduling).



• A BoT is a job which consists of simple independent tasks 
which arrive to system on the same time.

• Execution of a BoT is completed when all of the tasks which 
belong to the same job are executed.

tend of BoT=max(tend 1,…,tend n)tarrival of BoT

Bag of Tasks

1

N

2

ttask dispatching tend

tstart

Bag of Tasks Scheduling

Fig. 5. A BoT



Gang Scheduling I

In distributed systems jobs often consist of frequently 
communicating tasks which can be processed in parallel.

An efficient way to schedule this kind of jobs is Gang 
Scheduling, which is a combination of time and space 
sharing.

According to this technique, a job is decomposed into 
tasks that are grouped together into a gang and 
scheduled and executed simultaneously on different 
processors.



Gang Scheduling II

• The overhead of the communication between the tasks of a job is assumed 
to be included in the execution time of the tasks.

• The number of tasks in a gang must be less or equal to the number of 
available processors.

Fig. 6. Model of a gang job with N tasks
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Gang Scheduling III

In Gang Scheduling, the tasks of a job need to start execution 
simultaneously, because in this way the risk of a task waiting 
to communicate with another task that is currently not running 
is avoided.

Without Gang Scheduling, the synchronization of a job’s tasks 
would require more context switches and thus additional 
overhead.

In Gang Scheduling, in order for a job with N tasks to be 
completed, N processors must execute the tasks 
concurrently.



Gang Scheduling IV

• A common problem that occurs when using gang 
scheduling in a Grid, is that there is a number of 
processors in all sites that remain idle even if there are 
tasks in their queues.

• This is due to the fact that the execution of a gang does 
not start unless all of its tasks can start execution 
simultaneously.

• Task Migrations is a technique to avoid this delay.

• Migration is the transfer of a gang task from one queue 
to the head of another queue.  



Gang Scheduling V

• The tasks of a gang can be migrated both locally and 
through the grid. (Papazachos and Karatza 2009a, b)

• A local migration is the transfer of a task from one processor 
queue to another, in the same cluster (site).

• A grid migration is the transfer of a task from one cluster to 
another. A grid migration causes a higher overhead than a 
local migration.

• However, the overhead caused by migrations during gang 
scheduling in a grid can be tolerable and migrations can 
ultimately lead to a better system performance.



Gang Scheduling VI

In order for the scheduler to allocate a gang that is ready for 
execution to a set of processors, one of the following policies 
is usually used:

Adapted First Come First Served (AFCFS):

Attempts to schedule a job (gang) whenever processors 
assigned to its tasks are available.

When there are not enough processors available for a large job 
whose tasks are waiting at the front of the queues, it schedules
smaller jobs whose tasks are behind the tasks of the large job.

One major problem of this policy is that it tends to favor jobs 
consisting of a smaller number of tasks.



Gang Scheduling VII

Largest Job First Served (LJFS):

Tasks are placed in increasing job size order in processor queues. That 
is, tasks that belong to larger jobs (gangs) are placed at the head of the 
queues.

All tasks in queues are searched in order and the first jobs whose 
assigned processors are available begin execution.

This method tends to improve the performance of large, highly parallel 
jobs at the expense of smaller jobs, but in many cases this is desirable 
(e.g. supercomputer centers often run large, highly parallel jobs that 
cannot run elsewhere).

It has been shown that in most cases LJFS performs better than 
AFCFS. However, the relative performance of the two scheduling 
strategies depends on the system and workload models. 



Gang Scheduling VIII

• There are often complex parallel jobs which are bags of 
independent gangs instead of single gangs.

• A Bag of Gangs (BoG) completes its execution when every 
gang which belongs to the job finishes its execution.  

• The gangs of a BoG can be executed on any processors in 
any order. 

• The price paid for the increased parallelism is a 
synchronization delay that occurs when gangs wait for other 
sibling gangs of the same BoG to finish their execution.

• The performance of scheduling BoGs in a system with
heterogeneous clusters is examined in Papazachos and 
Karatza, 2010. It is shown that LGFS with migrations
outperforms the other methods.



Gang Scheduling IX
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Gang Scheduling X
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DAG Scheduling I

In grid systems, a different workload model  from gangs, 
is the following: 

A job may be decomposed into a collection of tasks with 
precedence constraints among them, so that a task’s 
output may be used as input by other tasks of the job.

That is, a job is a Directed Acyclic Graph (DAG).

In order for a task to start execution, all of its 
predecessor tasks must have been completed.



DAG Scheduling II

A task with no predecessors is called an entry task, whereas 
a task with no successors is called an exit task.

The immediate predecessors of a task are called parents of 
the particular task.

The immediate successors of a task are called children of 
the particular task.

Each vertex in a DAG represents a task of the job, whereas a 
directed edge between two tasks represents a message that 
must be sent from the parent task to the child task.



DAG Scheduling III

Assigned to each edge is a communication cost.

A child task can start execution only if it has received its 
required input data from all of its parent tasks.

It is assumed that no additional data are required during a 
task’s execution and that the output data of a task are 
available only after the task’s completion.

If a child task is assigned to the same processor as one of its 
parent tasks, the communication cost between the two tasks 
is considered negligible.



DAG Scheduling IV

The level L of a task is the length of the longest path from the 
particular task to an exit task of the graph, taking into account 
the execution times of the tasks and the communication costs 
of the edges on the path. The level of an exit task is equal to 
the task’s service (i.e. execution) time.

The static level SL of a task is the length of the longest path 
from the particular task to an exit task of the graph, but 
without taking into account the communication cost of the 
edges on the path.

The critical path length CPL of the DAG is the length of the 
longest path from an entry task to an exit task in the graph. 
That is, it is equal to the highest level L of a task in the graph.



DAG Scheduling V

Fig. 7. A Directed Acyclic Graph (DAG)
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DAG Scheduling VI

Task Level L Static Level SL

T1 21 14

T2 22 12

T3 9 9

T4 17 11

T5 7 5

T6 4 4

T7 2 2

T8 1 1



DAG Scheduling VII

• The critical path of the DAG is CPL=22. The edges on 
the critical path of the graph are shown with thick arrows.

• Some of the most commonly used DAG Scheduling 
policies are:

• Highest Level First (HLF):

– The ready task with the highest level L is scheduled first.



DAG Scheduling VIII

• Dynamic Level Scheduling (DLS):

– At each step, this policy selects the ready task Ti - processor Pj
pair which gives the largest value to the expression:

• SL(Ti) - EST(Ti ,Pj)

– where SL(Ti) is the static level of task Ti and EST(Ti ,Pj) is the 
earliest estimated start time of task Ti on processor Pj .

– The above  expression is called the dynamic level of the task –
processor pair (Ti ,Pj). 



DAG Scheduling IX

• It has been proved that in the case of the static scheduling of a 
single DAG on a multiprocessor system, the time complexity of HLF 
is O(n2), whereas the time complexity of DLS is O(pn3), where n is 
the number of tasks in the DAG and p is the number of processors 
in the system.

• Therefore, DLS causes a higher scheduling overhead than HLF, 
since at each scheduling step it performs exhaustive pair matching 
of ready tasks to processors, in order to find the task – processor  
pair with the highest dynamic level.

• Ultimately, the relative performance of HLF and DLS depends on 
the system and workload models and on the performance metric 
that is used. Examples of performance metrics are the total 
makespan (schedule length) and the processor utilization. 



DAG Scheduling X

G.L. Stavrinides and H.D. Karatza, “Scheduling Multiple Task 
Graphs with End-to-End Deadlines in Distributed Real-Time 
Systems Utilizing Imprecise Computations”, Journal of Systems and 
Software, Elsevier, 83 (2010) pp. 1004–1014.



Real-Time Scheduling I

Grid systems are often used to run real-time applications.

In real-time systems the correctness of the system does not
depend only on the logical results of the computations, but also on
the time at which the results are produced.

Such systems are used for the control of nuclear power plants,
financial markets, radar applications and wireless communications.

The jobs in a real-time system have deadlines which must be met.

If a real-time job cannot meet its deadline, then its results will be
useless, or even worse, catastrophic for the system and the
environment that is under control.



Real-Time Scheduling II

Periodic jobs – Aperiodic jobs

A periodic job Ji is characterized by (Pi, Ci), where Pi is the 
period of job Ji and Ci is the execution time of Ji. The deadline
of the job is Di, where Di ≤ Pi.

Fig. 8. A periodic job, Di = Pi.

Time     



Real-Time Scheduling III

A real-time system must guarantee that every job will 
complete its execution before its deadline.

Some of the most commonly used real-time scheduling 
algorithms are:

Earliest Deadline First (EDF):

The job with the earliest deadline is scheduled first.



Real-Time Scheduling IV

Least Laxity First (LLF):

The job with the smallest laxity is scheduled first.

The laxity LX of a job J at time t is defined as follows:

LXt(J) = D(J) – t – St(J)

where D(J) is the absolute deadline of job J (measured from time 
zero) and St(J) is the remaining service time of job J at time t.

That is, the laxity of a job J at time t is the amount of time left 
between J’s completion and J’s deadline, assuming that J could 
start execution at the current time instant (time t).



Real-Time Scheduling V

Since the laxity of a job changes over time, it must be recalculated 
at each scheduling step, causing additional scheduling overhead.

It has been proved that both EDF and LLF policies are optimal on a 
single processor with independent, periodic, preemptible jobs. 
However, neither of these algorithms has been shown to be optimal 
on multiprocessor systems. 

In most cases of distributed real-time systems, EDF performs better 
than LLF. However, the relative performance of each strategy 
ultimately depends on the system and workload models, as well as
the employed performance metric (e.g. job guarantee ratio, 
tardiness of the jobs etc).



Real-Time Scheduling VI

In real-time systems it is often more desirable for a job to 
produce an approximate result by its deadline, than to 
produce an exact result late.

Imprecise Computations can achieve that. It is a 
technique according to which the execution of a real-
time job is allowed to return intermediate (imprecise) 
results of poorer, but still acceptable quality, when the 
deadline of the job cannot be met.



Real-Time Scheduling VII

It is assumed that every job is monotone, that is the 
accuracy of its intermediate results is increased as more 
time is spent to produce them.

If the execution of a monotone job is fully completed, 
then the results are precise.

Typically, a monotone job consists of a mandatory part 
MP, followed by an optional part OP.

In order for a job to be completed, it must complete at 
least its mandatory part before its deadline.



Real-Time Scheduling VIII

The notification time NT of a job is the difference between the 
absolute deadline of the job and the job’s mandatory part 
(NT = D - MP).

RD

MP

NT D

Fig. 9. A job’s associated times in the Imprecise Computations case



Real-Time Scheduling IX

If a job J is waiting for service and its notification time is 
reached, then it can start execution if:

its assigned processor is idle or 

the job in service on J’s assigned processor has 
completed its mandatory part. In this case, the job in 
service is aborted and job J occupies the processor.

If job J cannot start execution, it is considered lost, because it 
will definitely miss its deadline.



Real-Time Scheduling X

In the case where a real-time job is a DAG and has an end-to-
end deadline, the following scheduling policy can be used:

Least Space-Time First (LSTF):

The ready task with the smallest space-time is scheduled first.

The space-time ST of a task T (which is a member of a DAG J) 
at time t is defined as:

STt(T) = D(J) – t – L(T)

where D(J) is the absolute deadline of job J and L(T) is the level 
of task T.



Real-Time Scheduling XI

In the Imprecise Computations case, the output of a parent 
task in a DAG may be imprecise. 

Therefore, the child tasks that use as input the result of the 
particular parent task may have input error.

Input error may cause an increase in the execution time of the 
mandatory part of a child task, since more time may be 
required by the child task to correct the error and produce an 
acceptable result. 

The quality of a DAG’s results ultimately depends on the 
result precision of the DAG’s exit tasks. Therefore, all exit 
tasks of a graph should be allowed to complete their entire 
optional part.



Real-Time Scheduling XII

• G. L. Stavrinides and H. D. Karatza, “Performance evaluation of gang 
scheduling in distributed real-time systems with possible software faults”, In 
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Computer and Telecommunication Systems (SPECTS’08), Edinburgh, UK, 
Jun. 2008, pp. 1–7. 

• G. L. Stavrinides and H. D. Karatza, “Fault-tolerant gang scheduling in 
distributed real-time systems utilizing imprecise computations”, Simulation: 
Transactions of the Society for Modeling and Simulation International, Sage 
Publications, vol. 85, no. 8, pp. 525–536, Aug. 2009.



Fault-Tolerant Scheduling I

Fault tolerance is an important issue in Grid Computing as the 
availability of Grid resources can not be guaranteed.

Real-time systems in particular, need to tolerate possible software 
faults that may cause failures during the execution of a job.

Imprecise computations combined with checkpointing can provide 
fault-tolerance in distributed real-time systems.

This is achieved with application-directed checkpoints: 

• each job is responsible for checkpointing its own progress 
periodically (by saving its intermediate results) at regular 
intervals during its execution, so that a checkpoint takes place
when the job completes its mandatory part.



Fault-Tolerant Scheduling II

Example: Checkpoints occur when the 20%, 40%, 60% and 80% 
of the job’s service time is completed. The mandatory part of 
the job constitutes the 60% of the job’s service time. The third 
checkpoint takes place when the mandatory part of the job is 
completed.

job's mandatory part MP

checkpoint 1 checkpoint 2 checkpoint 3 checkpoint 4

job's optional part OP

Fig. 10. Checkpoints



Fault-Tolerant Scheduling III

• When a failure occurs, the interrupted job is rolled back 
and resumes execution from its last generated 
checkpoint.

• If the last generated checkpoint of the interrupted job 
occurred after the completion of the job’s mandatory 
part, then there is no need for rollback. The job is 
aborted and we accept the imprecise results saved by 
the job’s last checkpoint.



Fault-Tolerant Scheduling IV

For DAG applications, effective scheduling methods must 
include fault tolerant mechanisms to preserve the execution in 
the case of processor failures.

• G. L. Stavrinides and H. D. Karatza, “Performance evaluation of 
gang scheduling in distributed real-time systems with possible 
software faults”, In Proc. of the 2008 International Symposium on 
Performance Evaluation of Computer and Telecommunication 
Systems (SPECTS’08), Edinburgh, UK, Jun. 2008, pp. 1–7. 

• G. L. Stavrinides and H. D. Karatza, “Fault-tolerant gang 
scheduling in distributed real-time systems utilizing imprecise 
computations”, Simulation: Transactions of the Society for Modeling
and Simulation International, Sage Publications, vol. 85, no. 8, pp. 
525–536, Aug. 2009.



Cloud Computing I

Cloud computing is 
the clear architecture
of choice for the bulk
of information
technology needs of
the 21st century

Source: Alexander Pasik, 
IEEE Roundup,the editors 
blog 2012.

Cloud computing evolves from grid computing 



• Cloud computing provides users the ability to lease
computational resources from its virtually infinite pool for 
commercial, business, and scientific applications. 

• If cloud computing is going to be used for HPC, 
sophisticated methods must be considered for both 
parallel job scheduling and VM scalability.

• Furthermore, high-speed, scalable, reliable networking is 
required for transferring data within the cloud and 
between the cloud and external clients. 

Cloud Computing II



Cloud Computing III

• Clouds were mostly used for simple sequential 
applications. However, recent evolutions enables the 
HPC community to run parallel applications in the 
Cloud.

• Good resource management policies can provide great 
improvements on different metrics: 

• maximum utilization of the resources, 
• faster execution times, and 
• better user’s satisfaction (QoS guarantees).



Cloud Computing IV

• Users can have access to a large number of 
computational resources at a fraction of the cost of 
maintaining a supercomputer center.

• A user can receive a service from the cloud without ever 
knowing which machines rendered the service, where it 
was located, or how many redundant copies of its data 
there are. 

• The term “cloud” appears to have originated with 
depiction of the Internet as a cloud hiding many 
servers and connections.



Cloud Computing V

Cloud computing is a paradigm in which computing is 
moving from personal computers to large, centrally 
managed datacenters – Questions:

• How does cloud computing differ from Grid computing, 
and other previous models of distributed systems? 

• What new functionalities are available to application 
developers and service providers? 

• How do such applications and services leverage pay-as-
you-go pricing models and rapid provisioning to meet 
elastic demands ?



Cloud Computing VI

Fig. 11. Cloud Issues (Source: IDC Survey, 3Q09)
http://blogs.idc.com/ie/?p=730 



• The cloud model utilizes the concept of Virtual 
Machines (or VMs) which act as the 
computational units of the system. 

• Depending on the computational needs of the 
jobs being serviced, new VMs can be leased
and later released dynamically. 

• It is important to study, analyze and evaluate 
both the performance and the overall cost of 
different scheduling algorithms. 

Cloud Computing VII



• The scheduling algorithms must seek a way to 
maintain a good response time to leasing 
cost ratio.

• Users requirements for quality of service (QoS) 
and specific system level objectives such as 
high utilization, cost, etc. have to be satisfied.

• Furthermore, data security and availability are 
critical issues that have to be considered as well. 

Cloud Computing VIII



Cloud Computing IX

Realizing cloud computing benefits requires new 
techniques for:

• managing shared data in the cloud, 
• fault-tolerant computation, 
• protecting privacy,
• scheduling, and sharing resources among applications,
• communication,
• billing. 

Doug Terry, Microsoft, Chairman, ACM Tech Pack
Committee on Cloud Computing, 2011,  
http://techpack.acm.org/cloud/



Computing Paradigms I

Today’s computing represents the intersection of three 
broad paradigms for computing infrastructure and use: 

(1) Owner-centric (traditional) HPC; 
• resources are locally owned, with private access

(2) Grid computing (resource sharing); 
• resources are both locally and externally owned

(3) Cloud computing (on-demand resource/ service 
provisioning).

• resources can be either externally owned (public cloud), or 
internally owned (private cloud).



Computing Paradigms II

Each paradigm is characterized by a set of attributes of 
the resources making up the infrastructure and of the 
applications executing on that infrastructure.

• G. Mateescu, W. Gentzsch, C. Ribbens
"Hybrid Computing—Where HPC meets Grid and Cloud 
Computing", Future Generation Computer Systems 27 (2011) 
440–453



Computing Paradigms III

Fig. 12. Comparison of Attributes

Source: G. Mateescu et al. / Future Generation Comp. Systems 27 (2011) 440–453 



Computing Paradigms IV

• Each of the three major computing paradigms has its 
strengths and weaknesses. 

• The motivation for hybrid computing is to combine all 
three paradigms so that strengths are maintained or even 
enhanced, and weaknesses are reduced.



Cloud Performance – Simulation

Performance Evaluation -Simulation

• The performance evaluation of grids and clouds is often 
possible only by simulation rather than by analytical 
techniques, due to the complexity of the  systems. 

• Simulation can provide important insights into the 
efficiency and tradeoffs of scheduling in large-scale 
heterogeneous distributed systems, such as grids and 
clouds. 

• Synthetic workloads – Traces from real systems.



Scheduling manages:

• the selection of resources for a job, 

• the allocation of jobs to resources and 

• the monitoring of jobs execution. 

Cloud Performance - Scheduling



Cloud Performance – Energy Consumption

Fig. 13. Energy consumption at different levels in computing systems. 
Source: Anton  Beloglazov et als., “Chapter 3 - A Taxonomy and 
Survey of Energy-Efficient Data Centers and Cloud Computing 
Systems”, Advances in Computers, Vol. 82, 2011, 47 – 111.  



Common practices to conserve energy include:

– Shutting down idle servers
The idle power consumption of a server is about 50-60% 
of its peak power. Turning off the idle servers – versus the 
recovery time interval required.

– Use of dynamic voltage scaling (DVS)
The voltage is increased or decreased, depending on the 
system load. 

– Virtualization
Many jobs often need only a fraction of the available 
computational resources. These jobs can be run within a 
virtual machine (VM) leading to significant increases in 
overall energy efficiency. 

Cloud Performance – Energy Conservation



Processor characteristics

• Processors are characterized by:
– Performance capabilities
– Power characteristics 

• Classes of processors:
– High performance (HP) processors
– Energy efficient (EE) but slower processors. 

Cloud Performance – Energy Efficiency



Cloud Performance – Environment

Data Centers – Green Cloud

• Data centers hosting Cloud applications consume huge
amounts of electrical energy, contributing to high operational
costs and carbon footprints to the environment. 

• Therefore, we need Green Cloud computing solutions that
can not only minimize operational costs but also reduce the
environmental impact.

Anton Beloglazova, et als. “Energy-aware resource allocation
heuristics for efficient management of data centers for Cloud
computing”, Future Generation Computer Systems, Vol. 28, Issue
5, May, 2012, pp. 755-768.



Cloud Scheduling – The Simulation Model

Fig. 14. A task assignment model

Tasks to be scheduled



Cloud Scheduling – Dispatching

Fig. 15. Job tasks dispatching



• The use of the Cloud is “cost- associative”: 
One pays only for the computing time which is 
equivalent to the total lease time of virtual 
machines. 

• Cost to performance efficiency view.

• Total lease time (TL) of virtual machines while the 
system is in operation:

Cloud Scheduling – Performance / Cost



Cloud Scheduling – Migrations I

I. Moschakis and H.D. Karatza, “Performance and Cost evaluation 
of Gang Scheduling in a Cloud Computing System with Job 
Migrations and Starvation Handling”, Proceedings of ISCC 2011, 
June 28-July 1, 2011, Corfu, Greece, pp. 418-423.

Migration and Starvation Handling
systems are incorporated
to deal with job fragmentation.



Cloud Scheduling – Migrations II

Fig. 16. Tasks dispatching - migration



Cloud Scheduling – Real-Time Workflows

G.L. Stavrinides, H.D. Karatza, “A cost-effective and QoS-aware 
approach to scheduling real-time workflow applications in PaaS and 
SaaS clouds”, In Proceedings of the 3rd International Conference on 
Future Internet of Things and Cloud (FiCloud'15), Rome, Italy, Aug. 
2015, IEEE, pp. 231-239.

• Scheduling heuristic for real-time workflow applications
in a heterogeneous PaaS (or SaaS) cloud.

• Objectives:
(a) to guarantee that all applications will meet their 
deadline, providing high quality results, and  
(b) to minimize the execution time of each workflow 
application and thus the cost charged to the user.



Cloud Scheduling – Software Failures

G.L. Stavrinides, H.D. Karatza, “Scheduling real-time parallel 
applications in SaaS clouds in the presence of transient software 
failures”, in Proceedings of the 2016 International Symposium on 
Performance Evaluation of Computer and Telecommunication 
Systems (SPECTS'16), Montreal, Canada, Jul. 2016.

• Application-directed checkpointing and Approximate
Computations

• Objectives:
(a) provide resilience against temporary software failures, 
(b) guarantee that all applications will meet their

deadline,
(c) provide application results of high quality,
(d) minimize the monetary cost charged to the end-users. 



Cloud Scheduling – Interlinked Clouds I

• Ioannis A. Moschakis and Helen D. Karatza, “Multi-criteria 
scheduling of Bag-of-Tasks applications on heterogeneous interlinked 
Clouds with Simulated Annealing, Journal of Systems and Software, 
Elsevier, Vol. 101, March 2015. 

• While the use of the meta-heuristics does impose a 
performance overhead due to their complexity in 
comparison to simpler heuristics, 
the experimental analysis shows that only a relatively 
small number of steps is required in order to achieve an 
optimized schedule.



Cloud Scheduling – Interlinked Clouds II

Fig. 17. Interlinked Clouds



From Cloud to Sky Computing I

Source: Keathey et als., IEEE Internet Computing
Fig. 18. Sky Computing

K. Keahey,  M.Tsugawa, A.Matsunaga and J.Fortes, Sky Computing, 
IEEE Internet Computing, Vol.13, no. 5, 2009, pp. 43-51.

Sky with Clouds !

Grid Computing: 
Aggregation of distributed 

heterogeneous resources 

Sky Computing: 
Aggregation of distributed 

heterogeneous Clouds.



From Cloud to Sky Computing II

• In the past, site owners couldn’t trust a remote resource 
because they had no control over its configuration. 

• Now that clouds let users control remote resources, 
however, this concern is no longer an issue. 

• Combining the ability to trust remote sites with a 
trusted networking environment, a virtual site can now 
exist over distributed resources. 



From Cloud to Sky Computing III

• In order to have different Clouds compatible together, 
standards are being developed and also users develop 
software compatible with multiple Cloud platforms.

R. Buyya, R. Ranjan, and R. Calheiros. InterCloud: Utility-Oriented 
Federation of Cloud Computing Environments for Scaling of 
Application Services. LNCS, Vol. 6081 pp. 13–31, Springer Berlin / 
Heidelberg, 2010.



Jungle Computing

• Jungle computing is a form of high performance computing
that distributes computational work across cluster, grid and 
cloud computing. 

Jason Maassen, et al, “Towards jungle computing with 
Ibis/Constellation”, in Proceedings of the 2011 workshop on Dynamic 
distributed data-intensive applications, programming abstractions, 
and systems, ACM New York.

Frank Seinstra et al, “Jungle Computing: Distributed Supercomputing 
Beyond Clusters, Grids, and Clouds”, in Grids, Clouds and 
Virtualization, Computer Communications and Networks", Springer-
Verlag London Limited, 2011. 



Conclusions and Future Directions I

• Advances in processing, communication and 
systems/middleware technologies had as a result:

-- new paradigms and platforms for computing.

• The Cloud computing paradigm promises:

-- on-demand scalability, reliability, and cost-effective 
high-performance.



Conclusions and Future Directions II

• Our perception of computing is changing constantly 
(Mobile Cloud Computing). 

• The rise of Cloud computing presents a new opportunity 
for the evolution of computing. 

• Maybe, in few years computers will be nothing more than 
thin-clients, and all our processing will be done on the 
Clouds. 



Conclusions and Future Directions III

• Cloud computing offers great opportunities for 
enterprises.

• Simulation modeling is a valuable cost effective tool to 
efficiently examine the costs and risks associated with
moving enterprise applications to the Cloud.

• By using simulation, organizations can avoid risks and 
they can estimate in advance the possible benefits of 
moving some or all of their applications to the Cloud.



Conclusions and Future Directions IV

• However, multiple issues have to be addressed before 
Clouds become viable for large scale processing like 
HPC. 

• Security and availability will need the improvement of 
existing technologies, or the introduction of new ones, in 
order to achieve scalability that spans a very large 
number  of nodes.



Thank you !

karatza@csd.auth.gr


