
Performance Evaluation and
Analysis of Large Scale Distributed

Systems
Issues, Trends, Problems and Solutions

Summer School
COST Action cHiPSet

September 21-23, 2016, Bucharest, Romania

Eleni D. Karatza
Department of Informatics
Aristotle University of

Thessaloniki
Greece

Summary

The scope of this talk is:

• to present state-of-the-art research covering a variety of
concepts on performance of large scale distributed
systems such as grids and clouds,

• to present resource management issues that must be
addressed in order to make grids and clouds viable for HPC,

• to provide future trends and directions in the large scale
distributed systems area.

Presentation Structure

• Grid Issues - Cloud Issues
– Performance Evaluation

– Resource Management and Scheduling

– Complex Workloads

• Conclusions and Future Direction

• Parallel computers used in HPC are not always sufficient
to cope with resource intensive scientific and commercial
applications.

• Grids have emerged as an important infrastructure for
serving demanding jobs and evolved to become the
basis of Cloud computing.

Grid Issues - Cloud Issues I

• Computational and data grids and clouds are large-
scale distributed systems used for serving very
large and complex applications.

• Grids and Clouds performance became more important
due to the tremendous increase of users and
applications.

Grid Issues - Cloud Issues II

Important issues that must be addressed:

• Efficient scheduling,
• Resource management,
• Load balancing,
• Energy efficiency,
• Reliability,
• Security and Trust,
• Cost,
• Availability,
• Quality of Service.

Grid Issues - Cloud Issues III

Fig. 1.
HPC systems
categories and
attributes.

Source: H.
Hussain et als., A
survey on resource
allocation in high
performance
distributed
computing
systems, Parallel
Computing, Vol.
39, Issue 11, 2013,
pp. 709–736.

Grid Issues - Cloud Issues IV

The main idea of Grid Computing:

• To use a large number of distributed high-performance
computational resources while minimizing the related
operating costs
in order to solve complex and computationally
demanding problems that practically could not be
solved on a single resource.

Grid Computing I

Fig. 2. A model of grid computing system.
Source: H. Hussain et als., A survey on resource allocation in high
performance distributed computing systems, Parallel Computing,
Vol. 39, Issue 11, 2013, pp. 709–736.

Grid Computing II

• In such a dynamic, distributed computing environment,
where resource availability varies dramatically, efficient
resource allocation and job scheduling are essential.

• Grid scheduling manages the selection of the
appropriate sites and resources for jobs, the allocation of
jobs to specific resources and the monitoring of jobs
execution.

Grid Computing III

• A grid system following a hierarchical
architecture is organized at multiple levels:

– At the grid level, a grid scheduler selects the
appropriate sites for jobs

– At the in-site local level, local schedulers allocate jobs
to specific resources.

• Scheduling techniques should perform efficiently
across several metrics that represent both:

– user and system goals.

Grid Computing IV

Grid Computing V

• The usage of energy has become a major concern for
grid and cloud computing since the price of electricity has
increased dramatically.

• The energy consumption is a metric aiming at
diminishing the energy consumption of computations.

• This metric is always used in multi-criterion optimization
problems, otherwise all the jobs would be scheduled
sequentially on the most energy efficient machine.

Grid Scheduling I

• Scheduling in grid systems has been a major
research goal for many years. It has been
demonstrated that:

– Scheduling has a substantial impact on grid systems
performance.

– It can preserve individual application performance
so that certain jobs do not suffer from large delays.

– Simulation models are used to evaluate performance
of the policies.

Grid Scheduling II

Grid Scheduling:
Grid-Level Scheduling
Local-Level Scheduling

Parallel Job Scheduling
BoT Scheduling
Gang Scheduling
DAG Scheduling
Real-Time Scheduling
Fault-Tolerant Scheduling

Grid Scheduling III

• Grid systems usually have a hierarchical architecture,
consisting of:

•
– A global, Grid Scheduler, that is in charge of resource discovery

and allocation, and job execution management over multiple
sites.

– Local Schedulers, which are responsible for the local
scheduling of the jobs allocated to the particular site by the Grid
Scheduler.

• At each site, both grid jobs and local jobs compete for
the same resources.

Grid Scheduling IV

Fig. 3. A Grid Computing System

λ1

processor 1

processor 2

processor P1

λ

Grid
Scheduler

Site 1

Local
Scheduler 1

λN

processor 1

processor 2

processor PN

Site N

Local
Scheduler N

Grid Jobs
Arrivals

Local Jobs
Arrivals

Local Jobs
Arrivals

Grid Scheduling V

• Each site consists of a number of processors and a Local
Scheduler (LS).

• When a job departs from GS, it arrives at the LS of the
selected site.

• The LS submits the job to a processor according to a
policy.

• Each processor has its own queue, and a job enters the
queue if the processor is busy.

Grid Scheduling VI

Because of the nature of grids, there are important issues that
must be addressed:

• Efficient scheduling
• Load balancing.

Heterogeneity problems

• Efficient scheduling was already difficult with
homogeneous machines

• In heterogeneous systems, it gets worse – new models
are required.

Grid Scheduling VII

Scheduling algorithms usually have to deal with two
issues:

• Resource assignment which refers to the selection of
resources on which each job is assigned.

• Queue ordering which refers to the order in which jobs
are assigned to resources

Grid Scheduling VIII

Grid scheduling manages:

• the selection of resources for a job,
• the allocation of jobs to resources
• and the monitoring of jobs execution.

In a grid system where two different job types exist,
grid jobs and local jobs, scheduling becomes
much more challenging.

Grid Scheduling IX

• Effective load distribution is of great importance at grids
as it results to lower response times of jobs and fairness
in utilization among the heterogeneous sites.

• All types of jobs (local and grid jobs) must be served as
soon as possible, utilizing all the available resources,
achieving a high degree of load balancing among the
sites.

• Load balancing algorithms can be static or dynamic.

Grid-Level Scheduling Policies I

• Random:

– When there is a job arrival, the Grid Scheduler selects
randomly one of the sites and dispatches the grid job
to the particular site. In this case the Grid Scheduler
queue is not used.

Grid-Level Scheduling Policies II

• Deferred:
– The Grid Scheduler receives feedback from the Local

Schedulers regarding their load. This feedback is sent at a
specified time interval, which is called allocation interval.

– When there is a job arrival, the Grid Scheduler stores the job in
its queue and scheduling is deferred. The jobs are dispatched
from this queue at the end of each allocation interval.

– For each job, the site with the minimum load is selected.
Therefore, load balancing is achieved.

– The drawback of this policy is that grid jobs are delayed in the
Grid Scheduler queue, due to the postponement of the
scheduling process.

Grid-Level Scheduling Policies III

• Hybrid GS:

– The Hybrid policy is more composite, which combines the
Random and Deferred policies (S. Zikos and H. Karatza, 2008).

– There still exists the concept of Allocation Interval in which the
scheduling is deferred until information from sites becomes
available.

– The problem with the Deferred policy is the long delay of jobs
that arrive at the beginning of the Allocation Interval in GS.
Perhaps it’s better to route these jobs to a less “good” site with
zero delay in the GS’s queue. This is the case of Random policy.

Grid-Level Scheduling Policies IV

• Hybrid GS cont.

– On the other hand, jobs that arrive in shortly before the end of
interval benefit from the best site selection which compensates
the delay in queue. This is the Deferred policy part.

– The question here is when the GS changes policy, from Random
to Deferred. A parameter (A_I%) is introduced which shows the
percentage of Allocation Interval in which the Random policy is
used.

– If a job arrives beyond the threshold that A_I% defines, then the
GS operates according to Deferred policy.

Grid-Level Scheduling Policies V

Fig. 4. GS operation when Hybrid_GS policy is used with A_I% = 0.5

Allocation Interval

Previous load information Next load informationA_I%

Random GS Deferred GS

Grid-Level Scheduling Policies VI

• Real-Time:
– Like Deferred policy, the Real-Time policy is based on

information about each site’s load. However, in this case
scheduling is not deferred and the Grid Scheduler has
updated load information at every job arrival. When a job
arrives, the Grid Scheduler allocates it to the least loaded
site without delay.

– This scenario is practically unachievable as the overhead
from the continuous feedback traffic would be enormous. It
is impossible for the Grid Scheduler to know exactly what
is happening to a large number of remote sites. However,
this Real-Time policy is often used for comparison
purposes.

Grid-Level Scheduling Policies VII

When the optimal percentage of the allocation interval is
applied, the Hybrid GS is approaching the Real-Time GS
policy in performance.

Grid-Level Scheduling Policies VIII

• References:

– S. Zikos and H. Karatza, “Communication Cost Effective Scheduling Policies of
Nonclairvoyant Jobs with Load Balancing in a Grid”, The Journal of Systems and
Software, Elsevier, Vol. 82, issue 12, 2009, pp. 2103-2116.

– S. Zikos and H. Karatza, “The Impact of Service Demand Variability on
Resource Allocation Strategies in a Grid System”, ACM Transactions on
Modeling and Computer Simulation (TOMACS), Vol. 20, Issue 4, Article No. 19,
October 2010, pp. 19:1-19:29.

– S. Zikos and H.D. Karatza, “Resource Allocation Strategies in a 2-level
Hierarchical Grid System”, Proceedings of the 41st Annual Simulation
Symposium (ANSS), IEEE Computer Society Press, SCS, April 13-16, 2008,
Ottawa, Canada, pp. 157-174.

– S. Zikos and H. Karatza, “Clairvoyant site allocation of jobs with highly
variable service demands in a computational grid”, to appear in the
Proceedings of the 9th International Workshop on Performance Modeling,
Evaluation, and Optimization of Ubiquitous Computing and Networked Systems
(PMEO-UCNS'10), in conjunction with IPDPS 2010, April 19-23, 2010, Atlanta,
GA.

Local-Level Scheduling Policies I
Resource assignment

– At each site, the Local Scheduler schedules both the
local and grid jobs according to a specified
scheduling policy.

– Local and grid jobs may consist of a single task or
multiple tasks.

– Depending on job characteristics, various types of
scheduling policies can be employed in each site.

Local-Level Scheduling Policies II
Resource assignment

• Random LS
Each LS randomly selects one of the processors to execute a job.

• Shortest Queue LS
A LS uses information about the number of jobs in each local queue
and selects the processor with the least number of jobs waiting in
queue. In case there are two empty queues, the idle processor is
selected.

• 2 Random – Shortest Queue LS
Two random processors are selected initially, and then the Shortest
Queue policy between these processors is applied. In
[Mitzenmacher, 2001], it is proven that two choices, instead of one,
offer exponential improvement in a job’s response time in various
models.

Local-Level Scheduling Policies III
Resource assignment

• M. Mitzenmacher, “The Power of Two Choices in
Randomized Load Balancing”, IEEE Transactions on
Parallel and Distributed Systems, Volume 12 , Issue 10,
(October 2001), pp. 1094 – 1104, 2001.

• S. Dimitriadou and H.D. Karatza, “Multi-Site Allocation Policies on
a Grid and Local Level”, Proceedings of the Fourth International
Workshop on Practical Applications of Stochastic Modelling
(PASM’09), (Mascots 2009 Workshop), 24 Sept. 2009, Imperial
College, London, Elsevier's ENTCS (Electronic Notes in Theoretical
Computer Science).

Local-Level Scheduling Policies IV
Resource assignment

• Implementing migrations is a strategy used for dynamic load
sharing.

• Migration enables us to dynamically adjust the schedule and
rearrange jobs in the queues.

• In heterogeneous multi-cluster systems the need of migration
for load balancing purposes is necessary since the load of
each cluster might differ in time.

• It is a complex procedure which involves overheads.
Therefore, it should be employed with caution in order to be
beneficial.

Local-Level Scheduling Policies V
Resource assignment

• FCFS scheduling policy
FCFS ensures certain kind of fairness, does not require in advance
information about job execution time, does not require much
computational effort, and is easy to implement.

• Shortest-time-first
This policy assumes that a priori knowledge about a task is available
in form of service demand. However, a priori information is not often
available and only an estimate of job execution time can be
obtained.

This method is not fair to jobs with large service demands. For this
reason modified versions are used which limit the number of times
a large job can be bypassed by smaller jobs.

Parallel Job Scheduling

• A job may consist of independent tasks which can be
processed in parallel (Bag-of-tasks Scheduling).

• A job may consist of frequently communicating tasks which
can be processed in parallel (Gang Scheduling).

• A job may be decomposed into a collection of tasks with
precedence constraints among them. These tasks may be
scheduled on different nodes of the system (DAG
Scheduling).

• Composite jobs may have end-to-end deadlines (Real-
Time Scheduling).

• Software failures may occur during the execution of a job
(Fault-Tolerant Scheduling).

• A BoT is a job which consists of simple independent tasks
which arrive to system on the same time.

• Execution of a BoT is completed when all of the tasks which
belong to the same job are executed.

tend of BoT=max(tend 1,…,tend n)tarrival of BoT

Bag of Tasks

1

N

2

ttask dispatching tend

tstart

Bag of Tasks Scheduling

Fig. 5. A BoT

Gang Scheduling I

In distributed systems jobs often consist of frequently
communicating tasks which can be processed in parallel.

An efficient way to schedule this kind of jobs is Gang
Scheduling, which is a combination of time and space
sharing.

According to this technique, a job is decomposed into
tasks that are grouped together into a gang and
scheduled and executed simultaneously on different
processors.

Gang Scheduling II

• The overhead of the communication between the tasks of a job is assumed
to be included in the execution time of the tasks.

• The number of tasks in a gang must be less or equal to the number of
available processors.

Fig. 6. Model of a gang job with N tasks

ttask dispatching tend

tarrival of a gang

gang
tstart

Gang Scheduling III

In Gang Scheduling, the tasks of a job need to start execution
simultaneously, because in this way the risk of a task waiting
to communicate with another task that is currently not running
is avoided.

Without Gang Scheduling, the synchronization of a job’s tasks
would require more context switches and thus additional
overhead.

In Gang Scheduling, in order for a job with N tasks to be
completed, N processors must execute the tasks
concurrently.

Gang Scheduling IV

• A common problem that occurs when using gang
scheduling in a Grid, is that there is a number of
processors in all sites that remain idle even if there are
tasks in their queues.

• This is due to the fact that the execution of a gang does
not start unless all of its tasks can start execution
simultaneously.

• Task Migrations is a technique to avoid this delay.

• Migration is the transfer of a gang task from one queue
to the head of another queue.

Gang Scheduling V

• The tasks of a gang can be migrated both locally and
through the grid. (Papazachos and Karatza 2009a, b)

• A local migration is the transfer of a task from one processor
queue to another, in the same cluster (site).

• A grid migration is the transfer of a task from one cluster to
another. A grid migration causes a higher overhead than a
local migration.

• However, the overhead caused by migrations during gang
scheduling in a grid can be tolerable and migrations can
ultimately lead to a better system performance.

Gang Scheduling VI

In order for the scheduler to allocate a gang that is ready for
execution to a set of processors, one of the following policies
is usually used:

Adapted First Come First Served (AFCFS):

Attempts to schedule a job (gang) whenever processors
assigned to its tasks are available.

When there are not enough processors available for a large job
whose tasks are waiting at the front of the queues, it schedules
smaller jobs whose tasks are behind the tasks of the large job.

One major problem of this policy is that it tends to favor jobs
consisting of a smaller number of tasks.

Gang Scheduling VII

Largest Job First Served (LJFS):

Tasks are placed in increasing job size order in processor queues. That
is, tasks that belong to larger jobs (gangs) are placed at the head of the
queues.

All tasks in queues are searched in order and the first jobs whose
assigned processors are available begin execution.

This method tends to improve the performance of large, highly parallel
jobs at the expense of smaller jobs, but in many cases this is desirable
(e.g. supercomputer centers often run large, highly parallel jobs that
cannot run elsewhere).

It has been shown that in most cases LJFS performs better than
AFCFS. However, the relative performance of the two scheduling
strategies depends on the system and workload models.

Gang Scheduling VIII

• There are often complex parallel jobs which are bags of
independent gangs instead of single gangs.

• A Bag of Gangs (BoG) completes its execution when every
gang which belongs to the job finishes its execution.

• The gangs of a BoG can be executed on any processors in
any order.

• The price paid for the increased parallelism is a
synchronization delay that occurs when gangs wait for other
sibling gangs of the same BoG to finish their execution.

• The performance of scheduling BoGs in a system with
heterogeneous clusters is examined in Papazachos and
Karatza, 2010. It is shown that LGFS with migrations
outperforms the other methods.

Gang Scheduling IX

References

• Z. Papazachos and H. Karatza, “Performance Evaluation of Gang
Scheduling in a Two-Cluster System with Migrations”, Proceedings
of the 8th International Workshop on Performance Modeling,
Evaluation, and Optimization of Ubiquitous Computing and Network
Systems (PMEO-UCNS 2009) IEEE International Parallel &
Distributed Processing Symposium (IPDPS), Rome, Italy, May 25-
29, 2009a.

• Z. Papazachos and H. Karatza, “Gang Scheduling in a Two-Cluster
System with Critical Sporadic Jobs and Migrations”, Proceedings of
the 2009 International Symposium on Performance Evaluation of
Computer and Telecommunication Systems (SPECTS 2009),
Istanbul, Turkey, 13-16 July, 2009b, pp. 41-48.

Gang Scheduling X

• References
• S. Dimitriadou and H.D. Karatza, “Job Scheduling in a Distributed System

Using Backfilling with Inaccurate Runtime Computations”, Proceedings of
the 4th International Conference on Complex, Intelligent and Software
Intensive Systems (CISIS-2010), IEEE Computer Society, Krakow, Poland,
Febr. 15-18, 2010.

• Z. Papazachos and H. Karatza, “Performance Evaluation of Bag of Gangs
Scheduling in a Heterogeneous Distributed System”, Journal of Systems
and Software, Elsevier, Vol. 83 (2010), pp. 1346–1354.

• Z. Papazachos, and H. Karatza, “Scheduling Bags of Tasks and Gangs in
a Distributed System”, The 2015 International Conference on Computer,
Information and Telecommunication Systems (CITS 2015), Gijón, Spain,
July 15-17, 2015.

DAG Scheduling I

In grid systems, a different workload model from gangs,
is the following:

A job may be decomposed into a collection of tasks with
precedence constraints among them, so that a task’s
output may be used as input by other tasks of the job.

That is, a job is a Directed Acyclic Graph (DAG).

In order for a task to start execution, all of its
predecessor tasks must have been completed.

DAG Scheduling II

A task with no predecessors is called an entry task, whereas
a task with no successors is called an exit task.

The immediate predecessors of a task are called parents of
the particular task.

The immediate successors of a task are called children of
the particular task.

Each vertex in a DAG represents a task of the job, whereas a
directed edge between two tasks represents a message that
must be sent from the parent task to the child task.

DAG Scheduling III

Assigned to each edge is a communication cost.

A child task can start execution only if it has received its
required input data from all of its parent tasks.

It is assumed that no additional data are required during a
task’s execution and that the output data of a task are
available only after the task’s completion.

If a child task is assigned to the same processor as one of its
parent tasks, the communication cost between the two tasks
is considered negligible.

DAG Scheduling IV

The level L of a task is the length of the longest path from the
particular task to an exit task of the graph, taking into account
the execution times of the tasks and the communication costs
of the edges on the path. The level of an exit task is equal to
the task’s service (i.e. execution) time.

The static level SL of a task is the length of the longest path
from the particular task to an exit task of the graph, but
without taking into account the communication cost of the
edges on the path.

The critical path length CPL of the DAG is the length of the
longest path from an entry task to an exit task in the graph.
That is, it is equal to the highest level L of a task in the graph.

DAG Scheduling V

Fig. 7. A Directed Acyclic Graph (DAG)

13

10
4

12

8

4

7

3

3 1

9 6

3

2

4

1

1T 2T

3T 4T

5T 6T

7T 8T

DAG Scheduling VI

Task Level L Static Level SL

T1 21 14

T2 22 12

T3 9 9

T4 17 11

T5 7 5

T6 4 4

T7 2 2

T8 1 1

DAG Scheduling VII

• The critical path of the DAG is CPL=22. The edges on
the critical path of the graph are shown with thick arrows.

• Some of the most commonly used DAG Scheduling
policies are:

• Highest Level First (HLF):

– The ready task with the highest level L is scheduled first.

DAG Scheduling VIII

• Dynamic Level Scheduling (DLS):

– At each step, this policy selects the ready task Ti - processor Pj
pair which gives the largest value to the expression:

• SL(Ti) - EST(Ti ,Pj)

– where SL(Ti) is the static level of task Ti and EST(Ti ,Pj) is the
earliest estimated start time of task Ti on processor Pj .

– The above expression is called the dynamic level of the task –
processor pair (Ti ,Pj).

DAG Scheduling IX

• It has been proved that in the case of the static scheduling of a
single DAG on a multiprocessor system, the time complexity of HLF
is O(n2), whereas the time complexity of DLS is O(pn3), where n is
the number of tasks in the DAG and p is the number of processors
in the system.

• Therefore, DLS causes a higher scheduling overhead than HLF,
since at each scheduling step it performs exhaustive pair matching
of ready tasks to processors, in order to find the task – processor
pair with the highest dynamic level.

• Ultimately, the relative performance of HLF and DLS depends on
the system and workload models and on the performance metric
that is used. Examples of performance metrics are the total
makespan (schedule length) and the processor utilization.

DAG Scheduling X

G.L. Stavrinides and H.D. Karatza, “Scheduling Multiple Task
Graphs with End-to-End Deadlines in Distributed Real-Time
Systems Utilizing Imprecise Computations”, Journal of Systems and
Software, Elsevier, 83 (2010) pp. 1004–1014.

Real-Time Scheduling I

Grid systems are often used to run real-time applications.

In real-time systems the correctness of the system does not
depend only on the logical results of the computations, but also on
the time at which the results are produced.

Such systems are used for the control of nuclear power plants,
financial markets, radar applications and wireless communications.

The jobs in a real-time system have deadlines which must be met.

If a real-time job cannot meet its deadline, then its results will be
useless, or even worse, catastrophic for the system and the
environment that is under control.

Real-Time Scheduling II

Periodic jobs – Aperiodic jobs

A periodic job Ji is characterized by (Pi, Ci), where Pi is the
period of job Ji and Ci is the execution time of Ji. The deadline
of the job is Di, where Di ≤ Pi.

Fig. 8. A periodic job, Di = Pi.

Time

Real-Time Scheduling III

A real-time system must guarantee that every job will
complete its execution before its deadline.

Some of the most commonly used real-time scheduling
algorithms are:

Earliest Deadline First (EDF):

The job with the earliest deadline is scheduled first.

Real-Time Scheduling IV

Least Laxity First (LLF):

The job with the smallest laxity is scheduled first.

The laxity LX of a job J at time t is defined as follows:

LXt(J) = D(J) – t – St(J)

where D(J) is the absolute deadline of job J (measured from time
zero) and St(J) is the remaining service time of job J at time t.

That is, the laxity of a job J at time t is the amount of time left
between J’s completion and J’s deadline, assuming that J could
start execution at the current time instant (time t).

Real-Time Scheduling V

Since the laxity of a job changes over time, it must be recalculated
at each scheduling step, causing additional scheduling overhead.

It has been proved that both EDF and LLF policies are optimal on a
single processor with independent, periodic, preemptible jobs.
However, neither of these algorithms has been shown to be optimal
on multiprocessor systems.

In most cases of distributed real-time systems, EDF performs better
than LLF. However, the relative performance of each strategy
ultimately depends on the system and workload models, as well as
the employed performance metric (e.g. job guarantee ratio,
tardiness of the jobs etc).

Real-Time Scheduling VI

In real-time systems it is often more desirable for a job to
produce an approximate result by its deadline, than to
produce an exact result late.

Imprecise Computations can achieve that. It is a
technique according to which the execution of a real-
time job is allowed to return intermediate (imprecise)
results of poorer, but still acceptable quality, when the
deadline of the job cannot be met.

Real-Time Scheduling VII

It is assumed that every job is monotone, that is the
accuracy of its intermediate results is increased as more
time is spent to produce them.

If the execution of a monotone job is fully completed,
then the results are precise.

Typically, a monotone job consists of a mandatory part
MP, followed by an optional part OP.

In order for a job to be completed, it must complete at
least its mandatory part before its deadline.

Real-Time Scheduling VIII

The notification time NT of a job is the difference between the
absolute deadline of the job and the job’s mandatory part
(NT = D - MP).

RD

MP

NT D

Fig. 9. A job’s associated times in the Imprecise Computations case

Real-Time Scheduling IX

If a job J is waiting for service and its notification time is
reached, then it can start execution if:

its assigned processor is idle or

the job in service on J’s assigned processor has
completed its mandatory part. In this case, the job in
service is aborted and job J occupies the processor.

If job J cannot start execution, it is considered lost, because it
will definitely miss its deadline.

Real-Time Scheduling X

In the case where a real-time job is a DAG and has an end-to-
end deadline, the following scheduling policy can be used:

Least Space-Time First (LSTF):

The ready task with the smallest space-time is scheduled first.

The space-time ST of a task T (which is a member of a DAG J)
at time t is defined as:

STt(T) = D(J) – t – L(T)

where D(J) is the absolute deadline of job J and L(T) is the level
of task T.

Real-Time Scheduling XI

In the Imprecise Computations case, the output of a parent
task in a DAG may be imprecise.

Therefore, the child tasks that use as input the result of the
particular parent task may have input error.

Input error may cause an increase in the execution time of the
mandatory part of a child task, since more time may be
required by the child task to correct the error and produce an
acceptable result.

The quality of a DAG’s results ultimately depends on the
result precision of the DAG’s exit tasks. Therefore, all exit
tasks of a graph should be allowed to complete their entire
optional part.

Real-Time Scheduling XII

• G. L. Stavrinides and H. D. Karatza, “Performance evaluation of gang
scheduling in distributed real-time systems with possible software faults”, In
Proc. of the 2008 International Symposium on Performance Evaluation of
Computer and Telecommunication Systems (SPECTS’08), Edinburgh, UK,
Jun. 2008, pp. 1–7.

• G. L. Stavrinides and H. D. Karatza, “Fault-tolerant gang scheduling in
distributed real-time systems utilizing imprecise computations”, Simulation:
Transactions of the Society for Modeling and Simulation International, Sage
Publications, vol. 85, no. 8, pp. 525–536, Aug. 2009.

Fault-Tolerant Scheduling I

Fault tolerance is an important issue in Grid Computing as the
availability of Grid resources can not be guaranteed.

Real-time systems in particular, need to tolerate possible software
faults that may cause failures during the execution of a job.

Imprecise computations combined with checkpointing can provide
fault-tolerance in distributed real-time systems.

This is achieved with application-directed checkpoints:

• each job is responsible for checkpointing its own progress
periodically (by saving its intermediate results) at regular
intervals during its execution, so that a checkpoint takes place
when the job completes its mandatory part.

Fault-Tolerant Scheduling II

Example: Checkpoints occur when the 20%, 40%, 60% and 80%
of the job’s service time is completed. The mandatory part of
the job constitutes the 60% of the job’s service time. The third
checkpoint takes place when the mandatory part of the job is
completed.

job's mandatory part MP

checkpoint 1 checkpoint 2 checkpoint 3 checkpoint 4

job's optional part OP

Fig. 10. Checkpoints

Fault-Tolerant Scheduling III

• When a failure occurs, the interrupted job is rolled back
and resumes execution from its last generated
checkpoint.

• If the last generated checkpoint of the interrupted job
occurred after the completion of the job’s mandatory
part, then there is no need for rollback. The job is
aborted and we accept the imprecise results saved by
the job’s last checkpoint.

Fault-Tolerant Scheduling IV

For DAG applications, effective scheduling methods must
include fault tolerant mechanisms to preserve the execution in
the case of processor failures.

• G. L. Stavrinides and H. D. Karatza, “Performance evaluation of
gang scheduling in distributed real-time systems with possible
software faults”, In Proc. of the 2008 International Symposium on
Performance Evaluation of Computer and Telecommunication
Systems (SPECTS’08), Edinburgh, UK, Jun. 2008, pp. 1–7.

• G. L. Stavrinides and H. D. Karatza, “Fault-tolerant gang
scheduling in distributed real-time systems utilizing imprecise
computations”, Simulation: Transactions of the Society for Modeling
and Simulation International, Sage Publications, vol. 85, no. 8, pp.
525–536, Aug. 2009.

Cloud Computing I

Cloud computing is
the clear architecture
of choice for the bulk
of information
technology needs of
the 21st century

Source: Alexander Pasik,
IEEE Roundup,the editors
blog 2012.

Cloud computing evolves from grid computing

• Cloud computing provides users the ability to lease
computational resources from its virtually infinite pool for
commercial, business, and scientific applications.

• If cloud computing is going to be used for HPC,
sophisticated methods must be considered for both
parallel job scheduling and VM scalability.

• Furthermore, high-speed, scalable, reliable networking is
required for transferring data within the cloud and
between the cloud and external clients.

Cloud Computing II

Cloud Computing III

• Clouds were mostly used for simple sequential
applications. However, recent evolutions enables the
HPC community to run parallel applications in the
Cloud.

• Good resource management policies can provide great
improvements on different metrics:

• maximum utilization of the resources,
• faster execution times, and
• better user’s satisfaction (QoS guarantees).

Cloud Computing IV

• Users can have access to a large number of
computational resources at a fraction of the cost of
maintaining a supercomputer center.

• A user can receive a service from the cloud without ever
knowing which machines rendered the service, where it
was located, or how many redundant copies of its data
there are.

• The term “cloud” appears to have originated with
depiction of the Internet as a cloud hiding many
servers and connections.

Cloud Computing V

Cloud computing is a paradigm in which computing is
moving from personal computers to large, centrally
managed datacenters – Questions:

• How does cloud computing differ from Grid computing,
and other previous models of distributed systems?

• What new functionalities are available to application
developers and service providers?

• How do such applications and services leverage pay-as-
you-go pricing models and rapid provisioning to meet
elastic demands ?

Cloud Computing VI

Fig. 11. Cloud Issues (Source: IDC Survey, 3Q09)
http://blogs.idc.com/ie/?p=730

• The cloud model utilizes the concept of Virtual
Machines (or VMs) which act as the
computational units of the system.

• Depending on the computational needs of the
jobs being serviced, new VMs can be leased
and later released dynamically.

• It is important to study, analyze and evaluate
both the performance and the overall cost of
different scheduling algorithms.

Cloud Computing VII

• The scheduling algorithms must seek a way to
maintain a good response time to leasing
cost ratio.

• Users requirements for quality of service (QoS)
and specific system level objectives such as
high utilization, cost, etc. have to be satisfied.

• Furthermore, data security and availability are
critical issues that have to be considered as well.

Cloud Computing VIII

Cloud Computing IX

Realizing cloud computing benefits requires new
techniques for:

• managing shared data in the cloud,
• fault-tolerant computation,
• protecting privacy,
• scheduling, and sharing resources among applications,
• communication,
• billing.

Doug Terry, Microsoft, Chairman, ACM Tech Pack
Committee on Cloud Computing, 2011,
http://techpack.acm.org/cloud/

Computing Paradigms I

Today’s computing represents the intersection of three
broad paradigms for computing infrastructure and use:

(1) Owner-centric (traditional) HPC;
• resources are locally owned, with private access

(2) Grid computing (resource sharing);
• resources are both locally and externally owned

(3) Cloud computing (on-demand resource/ service
provisioning).

• resources can be either externally owned (public cloud), or
internally owned (private cloud).

Computing Paradigms II

Each paradigm is characterized by a set of attributes of
the resources making up the infrastructure and of the
applications executing on that infrastructure.

• G. Mateescu, W. Gentzsch, C. Ribbens
"Hybrid Computing—Where HPC meets Grid and Cloud
Computing", Future Generation Computer Systems 27 (2011)
440–453

Computing Paradigms III

Fig. 12. Comparison of Attributes

Source: G. Mateescu et al. / Future Generation Comp. Systems 27 (2011) 440–453

Computing Paradigms IV

• Each of the three major computing paradigms has its
strengths and weaknesses.

• The motivation for hybrid computing is to combine all
three paradigms so that strengths are maintained or even
enhanced, and weaknesses are reduced.

Cloud Performance – Simulation

Performance Evaluation -Simulation

• The performance evaluation of grids and clouds is often
possible only by simulation rather than by analytical
techniques, due to the complexity of the systems.

• Simulation can provide important insights into the
efficiency and tradeoffs of scheduling in large-scale
heterogeneous distributed systems, such as grids and
clouds.

• Synthetic workloads – Traces from real systems.

Scheduling manages:

• the selection of resources for a job,

• the allocation of jobs to resources and

• the monitoring of jobs execution.

Cloud Performance - Scheduling

Cloud Performance – Energy Consumption

Fig. 13. Energy consumption at different levels in computing systems.
Source: Anton Beloglazov et als., “Chapter 3 - A Taxonomy and
Survey of Energy-Efficient Data Centers and Cloud Computing
Systems”, Advances in Computers, Vol. 82, 2011, 47 – 111.

Common practices to conserve energy include:

– Shutting down idle servers
The idle power consumption of a server is about 50-60%
of its peak power. Turning off the idle servers – versus the
recovery time interval required.

– Use of dynamic voltage scaling (DVS)
The voltage is increased or decreased, depending on the
system load.

– Virtualization
Many jobs often need only a fraction of the available
computational resources. These jobs can be run within a
virtual machine (VM) leading to significant increases in
overall energy efficiency.

Cloud Performance – Energy Conservation

Processor characteristics

• Processors are characterized by:
– Performance capabilities
– Power characteristics

• Classes of processors:
– High performance (HP) processors
– Energy efficient (EE) but slower processors.

Cloud Performance – Energy Efficiency

Cloud Performance – Environment

Data Centers – Green Cloud

• Data centers hosting Cloud applications consume huge
amounts of electrical energy, contributing to high operational
costs and carbon footprints to the environment.

• Therefore, we need Green Cloud computing solutions that
can not only minimize operational costs but also reduce the
environmental impact.

Anton Beloglazova, et als. “Energy-aware resource allocation
heuristics for efficient management of data centers for Cloud
computing”, Future Generation Computer Systems, Vol. 28, Issue
5, May, 2012, pp. 755-768.

Cloud Scheduling – The Simulation Model

Fig. 14. A task assignment model

Tasks to be scheduled

Cloud Scheduling – Dispatching

Fig. 15. Job tasks dispatching

• The use of the Cloud is “cost- associative”:
One pays only for the computing time which is
equivalent to the total lease time of virtual
machines.

• Cost to performance efficiency view.

• Total lease time (TL) of virtual machines while the
system is in operation:

Cloud Scheduling – Performance / Cost

Cloud Scheduling – Migrations I

I. Moschakis and H.D. Karatza, “Performance and Cost evaluation
of Gang Scheduling in a Cloud Computing System with Job
Migrations and Starvation Handling”, Proceedings of ISCC 2011,
June 28-July 1, 2011, Corfu, Greece, pp. 418-423.

Migration and Starvation Handling
systems are incorporated
to deal with job fragmentation.

Cloud Scheduling – Migrations II

Fig. 16. Tasks dispatching - migration

Cloud Scheduling – Real-Time Workflows

G.L. Stavrinides, H.D. Karatza, “A cost-effective and QoS-aware
approach to scheduling real-time workflow applications in PaaS and
SaaS clouds”, In Proceedings of the 3rd International Conference on
Future Internet of Things and Cloud (FiCloud'15), Rome, Italy, Aug.
2015, IEEE, pp. 231-239.

• Scheduling heuristic for real-time workflow applications
in a heterogeneous PaaS (or SaaS) cloud.

• Objectives:
(a) to guarantee that all applications will meet their
deadline, providing high quality results, and
(b) to minimize the execution time of each workflow
application and thus the cost charged to the user.

Cloud Scheduling – Software Failures

G.L. Stavrinides, H.D. Karatza, “Scheduling real-time parallel
applications in SaaS clouds in the presence of transient software
failures”, in Proceedings of the 2016 International Symposium on
Performance Evaluation of Computer and Telecommunication
Systems (SPECTS'16), Montreal, Canada, Jul. 2016.

• Application-directed checkpointing and Approximate
Computations

• Objectives:
(a) provide resilience against temporary software failures,
(b) guarantee that all applications will meet their

deadline,
(c) provide application results of high quality,
(d) minimize the monetary cost charged to the end-users.

Cloud Scheduling – Interlinked Clouds I

• Ioannis A. Moschakis and Helen D. Karatza, “Multi-criteria
scheduling of Bag-of-Tasks applications on heterogeneous interlinked
Clouds with Simulated Annealing, Journal of Systems and Software,
Elsevier, Vol. 101, March 2015.

• While the use of the meta-heuristics does impose a
performance overhead due to their complexity in
comparison to simpler heuristics,
the experimental analysis shows that only a relatively
small number of steps is required in order to achieve an
optimized schedule.

Cloud Scheduling – Interlinked Clouds II

Fig. 17. Interlinked Clouds

From Cloud to Sky Computing I

Source: Keathey et als., IEEE Internet Computing
Fig. 18. Sky Computing

K. Keahey, M.Tsugawa, A.Matsunaga and J.Fortes, Sky Computing,
IEEE Internet Computing, Vol.13, no. 5, 2009, pp. 43-51.

Sky with Clouds !

Grid Computing:
Aggregation of distributed

heterogeneous resources

Sky Computing:
Aggregation of distributed

heterogeneous Clouds.

From Cloud to Sky Computing II

• In the past, site owners couldn’t trust a remote resource
because they had no control over its configuration.

• Now that clouds let users control remote resources,
however, this concern is no longer an issue.

• Combining the ability to trust remote sites with a
trusted networking environment, a virtual site can now
exist over distributed resources.

From Cloud to Sky Computing III

• In order to have different Clouds compatible together,
standards are being developed and also users develop
software compatible with multiple Cloud platforms.

R. Buyya, R. Ranjan, and R. Calheiros. InterCloud: Utility-Oriented
Federation of Cloud Computing Environments for Scaling of
Application Services. LNCS, Vol. 6081 pp. 13–31, Springer Berlin /
Heidelberg, 2010.

Jungle Computing

• Jungle computing is a form of high performance computing
that distributes computational work across cluster, grid and
cloud computing.

Jason Maassen, et al, “Towards jungle computing with
Ibis/Constellation”, in Proceedings of the 2011 workshop on Dynamic
distributed data-intensive applications, programming abstractions,
and systems, ACM New York.

Frank Seinstra et al, “Jungle Computing: Distributed Supercomputing
Beyond Clusters, Grids, and Clouds”, in Grids, Clouds and
Virtualization, Computer Communications and Networks", Springer-
Verlag London Limited, 2011.

Conclusions and Future Directions I

• Advances in processing, communication and
systems/middleware technologies had as a result:

-- new paradigms and platforms for computing.

• The Cloud computing paradigm promises:

-- on-demand scalability, reliability, and cost-effective
high-performance.

Conclusions and Future Directions II

• Our perception of computing is changing constantly
(Mobile Cloud Computing).

• The rise of Cloud computing presents a new opportunity
for the evolution of computing.

• Maybe, in few years computers will be nothing more than
thin-clients, and all our processing will be done on the
Clouds.

Conclusions and Future Directions III

• Cloud computing offers great opportunities for
enterprises.

• Simulation modeling is a valuable cost effective tool to
efficiently examine the costs and risks associated with
moving enterprise applications to the Cloud.

• By using simulation, organizations can avoid risks and
they can estimate in advance the possible benefits of
moving some or all of their applications to the Cloud.

Conclusions and Future Directions IV

• However, multiple issues have to be addressed before
Clouds become viable for large scale processing like
HPC.

• Security and availability will need the improvement of
existing technologies, or the introduction of new ones, in
order to achieve scalability that spans a very large
number of nodes.

Thank you !

karatza@csd.auth.gr

