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a b s t r a c t 

In this study we conduct experiments on a modified content delivery simulation frame- 

work, as we aspire to compare miscellaneous policies for dynamic OSN-aware content de- 

livery. The incorporation of an OSN-aware dynamic mechanism becomes indispensable for 

CDN services, since (i)significantly large proportion of Internet traffic results from -easily 

produced via online media services and transmitted over OSNs- bandwidth-intensive mul- 

timedia content and (ii)multimedia content providers, such as YouTube, often rely on ubiq- 

uitous Content Distribution Networks (CDNs) infrastructures. Our policies take patterns 

of user activity over OSNs and exploit geo-social properties of users participating in re- 

transmissions of items over OSNs (social cascades), proceed to incorporate various caching 

schemes of the underlying infrastructure, different policies for the handling of OSN data 

and various approaches that take into account the efficient timing of prefetching. The sim- 

ulation framework we introduce can serve as the basis of further parameterized content 

delivery experimentation that exploits information transmission over OSNs and decreases 

replication costs by selectively copying items to locations where items are likely to be con- 

sumed. 

© 2016 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

 

1. Introduction 

1.1. CDNs 

The volume of content exchanged over the Internet nowadays has made content delivery integral part of the digital

ecosystem, and infrastructures like Content Distribution Networks (CDNs) have flourished as they mitigate the challenges

of content delivery. Content Distribution Network (CDN) services are being increasingly used to ensure the smooth delivery

of multimedia content for a wide range of innovative services, including multimedia social networks, P2P video streaming,

IPTV, interactive online games, cloud multimedia content delivery and content-centric networks. The amount of Internet

traffic generated every day by online multimedia streaming providers such as YouTube [1] has reached huge numbers. These

providers often rely on CDNs [2] to distribute their content from storage servers to multiple locations over the planet. CDNs

are ubiquitous by their presence. A CDN is essentially an overlay network with the task of improving Internet service quality

via replication of the content from place of origin to surrogate servers scattered over the Internet. Requests are served from
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surrogate servers closer to the clients’ location. CDN servers exchange content in a cooperative way to maximize overall

efficiency. 

There exist many commercial CDNs, including Akamai, NTT Communications CDN, Limelight, Microsoft Azure CDN,

CacheFly, MaxCDN, etc. with Akamai infrastructure deploying 170.0 0 0 servers in 102 countries [3] and Limelight deploying

18.0 0 0 servers in over 80 locations [4] . There is also a number of non-commercial ones [5,6] . CDNs may be very dissimilar

in terms of the services provided and their geographic coverage. The optimization of their overall efficiency, as far as the

user is concerned, is practically achieved with the automatic detection of the medium (computer/ smartphone / tablet), op-

timized management of the browser cache, server load-balancing, the consideration of the specific nature of the content of

the media provider (video content may include video on demand, live videos, geo-blocked content, etc.) or features of cer-

tain operators, such as real-time compression, session management, etc. CDNs address in general the major issues of (i) the

most efficient placement of surrogate servers in terms of high performance and low infrastructure cost; (ii) the best content

diffusion placement, namely the decision of which content will be copied in the surrogate servers and to what extent; and

(iii) the temporal diffusion, related to the most efficient timing of the content placement [7] . 

Copy policies for CDNs include: 

• Push-based copy policy: content is proactively prefetched to all surrogate servers, with minimum response time and

maximum copying content cost. Push-based copy policy is typically used for information that is in high demand by

users, e.g. large files or static assets that do not frequently change as often. 

• Pull-based copy policy: content is forwarded to the surrogate server at the moment the user asks for it, with minimum

copying cost and maximum response time. Pull-based copy policy is typically used for personalized information, e.g.

small objects with inherent virality and limited duration. 

Most modern CDNs deploy both pull and push zones, with pulling being the most dominant case. 

As far as the cooperation of the CDN infrastructure elements is concerned, there exist: 

• Cooperative CDNs: surrogate servers are cooperating with each other in case of cache misses to reduce replication and

update cost, adopting various policies (closest server, random selection, load balancing, etc.) for the mapping between

content request and surrogate server. Server selection decisions can be made on the client-side (e.g. probing, statistical

estimator), server-side (e.g. server push) or by the network infrastructure (e.g. DNS, anycast-enabled routers). An em-

pirical evaluation on client-side server selection algorithms in [8] has found that simple dynamic probing outperforms

other common clientside approaches, but individual client probing does not scale in an Internet-wide information-centric

setting. Server-side selection in view of anycast includes application and network-layer solutions [9–12] which may be

either restricted to specific content (e..g web services, wireless ad hoc networks)or may need offline pre-computation as

a preparation to serve content requests in real time. 

• Uncooperative CDNs: content is asked either from the local surrogate server or the origin server. 

Next generation ubiquitous CDNs will be leveraged in an array of ways to overcome the challenges of providing a seam-

less customer experience across multiple devices with varying connectivity and corresponding to the call for enterprise

application delivery. They will have to go beyond efficient resource discovery and retrieval tasks of the established CDNs

and support refined mechanisms for data placement, replication and distribution for a large variety of resource types and

media formats. OSNs on the other hand create a potentially transformational change in user navigation and from this an-

gle the rapid proliferation of OSNs sites is expected to reshape the architecture and design of CDNs. The challenges and

opportunities highlighted in the interdisciplinary field of OSN-aware content delivery are bound to foster some interesting

future developments, including innovative cache replacement strategies as a product of the systematic research of temporal,

structural and geographical properties of social cascades. In this work, we implement and experimentally evaluate dynamic

policies of content prefetching and have in our hands proof that OSNs can affect the content delivery infrastructure. 

1.2. Motivation 

Widespread use of ubiquitous OSNs has led to a radical change in public information sharing. The popularity of relatively

data heavy multimedia applications, such as YouTube, has also risen [13–15] , and the volume of User Generated Content

(UGC) has exploded across all media platforms (more than 300 hours of video content are uploaded in YouTube every

minute [16] ). OSN users increasingly repost links they have received from others and a large proportion of bandwidth-

intensive media is distributed via OSN links (for example YouTube videos links through retweets in Twitter), that contribute

significantly to Internet traffic [17] . Although it is difficult to estimate the proportion of traffic generated by OSNs, it is

observed that 320 million monthly active Twitter users send 500 million tweets per day, of which more than 400 tweets

per minute include a YouTube link [18–20] . 

Video streaming operators like YouTube own content delivery infrastructure consisting of geo-distributed servers and

caches all over the world. Cache selection mechanisms implemented within the delivery infrastructure of video operators

aim to satisfy the growing demand by directing users to nearby servers that contain the data. Transmission Control Protocol

(TCP), though, the protocol via which video data delivery is typically conducted, is subject to delay jitter and throughput

variations and clients are required to preload a playout buffer before staring the video playback. Due to the use of TCP, that
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Fig. 1. An example of a CDN of an OSN. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

via error recovery and congestion control ensures lack of packet losses, the quality of experience (QoE) of YouTube users

is primarily determined by stalling effects on application layer as opposed to image degradation in User Datagram Pro-

tocol (UDP)-based video streaming [21] . Cache server selection is also highly Internet Service Provider (ISP)-specific for the

YouTube case with geographical proximity not being the primary criterion and DNS level redirections for load-balancing pur-

poses occur quite frequently and can considerably increase the initial startup delay of the playback. Hence, from a QoE man-

agement perspective, the smooth playback of the video rather than visual image quality is the key challenge for YouTube,

and several network-level and client-level approaches are focused on the detection of interruptions, that have a dramatic

impact on the user experience [21] . 

With the growing popularity of OSNs and the increased traffic due to outspread of information through the latter, the

improvement of user experience through scaling bandwidth-demanding content largely depends on the exploitation of usage

patterns found in OSNs. The motivation of our study, thus, is to support SNA tasks (such as cascades characterization)

that accommodate large volumes of data for the improvement of user experience, e.g. via prefetching in the framework

of a CDN infrastructure that streaming providers own. We aim to apply social information in situations where traditional

bandwidth-intensive content scaling is infeasible. This happens because global replication demanded by traditional CDNs for

the voluminous content produced becomes expensive. Moreover, user-generated content is especially difficult due to its long

tail nature, with each item probably not popular enough to be replicated globally, but with the long-tail altogether getting

sufficient accesses [22] . 

1.3. Why is our approach necessary: an Example 

Let us consider Bob, who is living in London and is assigned to the London CDN servers of an Online Social Network

service ( Fig. 1 ). Most of Bob’s social contacts are geographically close to him, but he also has a few friends in Europe and

Australia assigned to their nearest servers. Bob logs into the OSN and uploads a video that he wants to share. A naive way

to ensure that this content is as close as possible to all users before any accesses occur would be to push the content to all

other geographically distributed servers immediately. 

Aggregated over all users, pushing can lead to a traffic spike, and users will experience latency in downloading the

content. Indeed, content delivery is subject to delay jitter and clients are required to preload a playout buffer before staring

the video playback. Moreover, the content may not be consumed at all. The problem of caching multimedia content is

further exacerbated when Alice, for example, who is the only friend of Bob in Athens, is interested in that content; there

are many such Alices in various places. 

Rather than pushing data to all surrogates, we can proactively distribute it only to friends of Bob, who is depicted as

B in Fig. 2 , likely to consume it. The content will be copied only under certain conditions (e.g. geographically close user

zones where Bob has mutual friends with high centrality, at non-peak times for the transfer according to the friend’s zone),

and users would not experience unnecessary delays in downloading the content. Thus, users such as Alice, depicted as A in

Fig. 2 , would not have to wait for the content to be downloaded, and the OSN provider would experience lower bandwidth

costs, as traffic congestion would be avoided. With the use of evolving graph sequence analysis [23] , this approach can be

applicable as an in-house solution of OSN providers. The necessary data will not have to be calculated on the fly, but only

across snapshots of gradually evolving graphs, reducing bandwidth and storage costs. 
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1.4. Contributions 

Overall, this paper provides the following contributions: 

• In the paper we conduct a multitude of experiments, and we reach some fruitful conclusions regarding how OSNs can

affect the content delivery performance. The Social Prefetcher policy surpasses performance improvement (30%) of similar

works in pull-based methods [24] , that are employed by most CDNs, and depicts better response times when various

approaches are implemented within the suggested simulation framework (e.g., [24,25] , as we present for first time in

this work. Our policies use more refined topology of data centers and do not neglect storage issues [25] , as storage

costs are still a significant challenge despite the proliferation of cloud computing. The findings of present work can be

exploited for future policies complementary to existing CDN solutions or incorporated to OSN providers mechanisms, to

handle larger scale data and we believe that they are generally applicable with a potentially high impact for large-scale

systems with traffic generated by online social services and microblogging platforms. 

• Our policies take patterns of user activity over OSNs and exploit geo-social properties of users participating in retrans-

missions of items over OSNs (social cascades). They proceed to incorporate various caching schemes of the underlying

infrastructure, different predictive models for the circulation of multimedia over OSN data, and various approaches that

take into account the efficient timing of prefetching and decrease replication costs by selectively copying items to loca-

tions where items are likely to be consumed. The simulation framework we introduce can serve as the basis of further

parameterized content delivery experimentation that exploits information transmission over OSNs. 

• We conduct experiments over a large corpus of YouTube videos transmitted over Twitter data. Social cascades are di-

rectly analyzed, as the real dataset of User Generated Content (UGC) used includes multimedia links over the OSN. The

Twitter dataset contains geographic locations, follower lists and tweets for 37 million users, spreading of more than one

million YouTube videos over this network, a corpus of more than 2 billion messages and approximately 1.3 million single

messages with an extracted video URL. The large user base of YouTube and Twitter allow us to obtain safe insights re-

garding user navigation behavior on other similar media and microblogging platforms, respectively, whereas restrictions

of the CDN infrastructure (storage issues, network topology) are taken into account in the well-validated CDN simulator

we use. 

The rest of this paper is structured as follows. Section 2 reviews previous related work. Section 3 formally describes the

addressed problem. The proposed policies along are described in Section 4 . Section 5 gives an outline of the methodology,

along with the preparation of the employed datasets. Our main findings are presented in Section 6 . Section 7 concludes the

paper and discusses directions for future work. 
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2. Related work 

2.1. Metrics for characterization of social cascades 

Local cascades affect only a relatively small number of individuals and typically terminate within one or two steps of the

initiator. The size of local cascades is therefore determined mostly by the size of an initiator’s immediate circle of influence,

not by the size of the network as a whole. Global cascades affect many individuals, propagate for many steps, and are

ultimately constrained only by the size of the population through which they pass. 

Different approaches follow for the characterization of the extent a cascade will receive. Some of them are related to

the extent that nodes are influenced by their neighbours on a microscopic level, such as the “vulnerability” that Watts

[26] introduces, some to factors that function as obstacles to the spread of a cascade on a macroscopic level, such as those

that Kleinberg and Easley [27] or Ver Steeg et al. [28] introduce. Dave et al. [29] combine microscopic and macroscopic level

properties to identify how empirical factors like user’s and their neighborhood’s influencing ability or a specific action’s

influencing capability and come to the conclusion that action dominates in the prediction of the spread of the action. 

In order to study the cascades a synopsis of the most indicative metrics follows. It includes some of the structural proper-

ties of the cascades, namely their size , which is the number of participants, including the initiator, their length [30] , denoting

the height of the cascade tree, the time delay between two consecutive steps of the cascade [31] , the time duration , and the

rate of the cascade [ [32] ]. Geographical properties are: the geodiversity , denoting the geometric mean of the geographic dis-

tances between all the pairs of users in the cascade tree, and the georange , denoting the geometric mean of the geographic

distances between the users and the root user of the cascade tree [31] . 

The field of predicting the appearance of social cascades is very active ( [30,33–35] , etc.) Many studies focus on the

prediction of the amount of aggregate activities (e.g. aggregate daily hashtag use [36] ), whereas others focus either on the

prediction of user-level behaviour, like retransmission of a specific tweet/ URL [37,38] or on the prediction of growth of the

cascade size [33] . 

Although our work focuses solely on video sharing, we identify the following methods for virality prediction in general

with our approach falling into the first category: (i) Feature-based methods are based on content, temporal and other fea-

tures, and the learning algorithms schemes they use are based on simple regression analysis [33,39] , regression trees [30] ,

content-based methods [40] , binary classification [41–43] etc. They do not focus, though, on the underlying network infras-

tructure, and often encounter difficulty in extracting all the necessary features due to the large volume of accommodated

graphs. (ii) Time-series analysis works [44,45] , on the other hand, argue that patterns of a resource’s growth of popularity

are indicative for its future retransmissions. 

2.2. Structure characteristics of OSNs and measurement studies 

The main characteristics of OSNs found by different studies are the following: Social networks are power-law [46] , and,

moreover scale-free [47] , and exhibit the small-networks property [48] . Low diameter and high clustering coefficient, as well

as power-laws for in- and out-degree distributions were confirmed for the Twitter social graph by Java et al. [49] . The

graphs representing the interaction among the nodes of a social network, known as “interaction graphs” also exhibit the

above properties [50] , but lower levels of the “small-world” properties than their social graph counterparts. 

Kumar et al. [51] observed that OSNs consist of the following three parts: singletons (nodes not participating in the

network), the giant component (a subgraph that contains highly active nodes or to be put differently a dense core of low,

actually shrinking, diameter, consistent with the observations in [52] ) and the middle region (the remainder, that consists of

various isolated communities interacting with one another but not with the overall network). 

The role the topological features play concerning the information diffusion in a network is shown in various works:

Indicatively, Draief et al. [53] show the effect of the network topology in the size of the population that eventually becomes

infected, showing that if the ratio of cure to infection rates is larger than the spectral radius of the graph, a small initially

infected population leads to a small also finally infected population and in the opposite case, in specific studied models, the

final infected population is large. 

Concerning the temporal evolution of OSNs, Leskovec et al. [52] highlight two additional characteristics, densification

power laws (average degree increases with E ( t ) and V ( t ) denoting the edges of the social graph and its nodes at time t ,

respectively, and a ∈ (1, 2), so that they obey: E ( t ) ∝ V ( t ) a ) and shrinking diameters (diameter decreasing as the network

grows), which are at odds, for example, with the preferential attachment model, in the notion that it generates graphs

with average node degree constant over time and slowly growing diameters. Forest Fire Model [52] is proposed instead to

simulate these properties. 

In terms of user workloads in OSNs, Benevenuto et al. [54] collected traces from a social network aggregator website in

Brazil, enabling connection to multiple social networks with a single authentication, and, thus, studied Orkut, MySpace, Hi5

and Linked. Benevenuto et al. presented a clickstream model to characterise users’ interactions, frequency and duration of

connection, as well as frequency of users’ transition to activities, such as browsing friends’ profiles, sending messages etc.,

with their analysis showing that browsing, which cannot be identified from visible traces, is the most dominant behavior

(92%). They also, reinforced the social cascade effect, since more than 80% of bandwidth-intensive-media content like videos

and photos was found through a 1-hop friend. 
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2.3. Systems, applications and techniques 

In Buzztraq [25] , Sastry et al. build a prototype system that takes advantage of the knowledge of the users’ friends’

location and number, to generate hints for the placement of replicas closer to future accesses. Comparing their strategy

with location based placement, which instead uses the geographical location of recent users, they find substantial decrease

of cost, when requests as part of cascades are more than random accesses of content. Furthermore, their system reacts faster

when there is a new region shift, since it starts counting friends of previous users in a new region, even before a request

comes from that region. The key concept of Buzztraq is to place replicas of items already posted by a user closer to the

locations of friends, anticipating future requests. The intuition is that social cascades are rapidly spread through populations

as social epidemics. The experimental results indicated that social cascade prediction can lower the cost of user access

compared to simple location-based placement. Buzztrack is a simple system that only provides hints as to where to place

objects. Other more complex constraints that the present work covers, such as server bandwidth and storage, are not taken

into account. Moreover, social cascade is indirectly analyzed because there has to be a third-party page where users connect

to view the videos and have access to their social profile. 

Compared to Buzztraq, the novelty that this work introduces is that it takes into account the parameters of a CDN

infrastructure, such as storage issues, and it also applies heuristics introduced from more recent works. In our approach,

social cascades are directly analyzed and access to social profiles is not conducted via a third-party page, but rather with a

real dataset from multimedia links spread over an OSN. 

In the direction of distributing long-tailed content while lowering bandwidth costs and improving QoS, although without

considering storage constraints, Traverso et al. in [24] exploit the time differences between sites and the access patterns

that users follow. Rather than naively pushing UGC immediately, which may not be consumed and contribute unnecessarily

to a traffic spike in the upload link, the system can follow a pull-based approach, where the first friend of a user in a Point

of Presence (PoP) asks for the content. Moreover, rather than pushing content as soon as a user uploads, content can be

pushed at the local time that is off-peak for the uplink and be downloaded in a subsequent time bin, also off-peak for the

downlink. The larger the difference is between the content production bin and the bin in which the content is likely to be

read, the better is the performance of the system. 

In Tailgate the authors make the non-realistic assumption that once a video is delivered to a site, all future requests

for that content originating from users of that site will be locally served. In other words, content is moved between sites

only once. Tailgate moreover has the limitation that authors assume read patterns follow a diurnal trend similar to write

patterns. Traverso et al. are more interested in time-of-day effects and more sophisticated read patterns with respect to

content interest, quality of content etc. are ignored. 

In [31] , Scellato et al. study how Twitter can be used to examine social cascades of UGC from YouTube and discover pop-

ular objects for replication. They improve the temporary caching policy by placing content after accounting for the distance

between users. For the model CDN system constructed and tested, Scellato et al. used the Limelight network properties

with 19 clusters of servers worldwide. To test the system, two different video weights were used: geosocial, in which node

locality values are calculated from all the users that have posted a message about the item (even without being involved

in a cascade), and geocascade, in which node locality values are calculated from the users participating in the item’s social

cascade. It was shown that the model improved performance against a no weight policy, with geocascade weight performing

better. Scellato et al. find that social cascades tend not to expand geographically, a notion which we also apply as a heuristic

in this work. 

The sequence of content requests created to the CDN directly from the Twitter messages within the dataset in [31] is

based on the assumption that every video contained in a Twitter message is requested by each follower of the author with

a certain probability. This assumption can be far from reality, as the authors explicitly state. In this work non-synthetic

workloads are obtained via the request generator we use. A non-synthetic dataset from multimedia links spread over an

OSN platform is used to directly analyze social cascades. 

Zhou et al. [55] leverage the connection between content exchange and geographic locality (using a Facebook dataset

they identify significant geographic locality not only concerning the connections in the social graph, but also the exchange

of content) and the observation that an important fraction of content is “created at the edge” ( is user-generated ), with a web

based scheme for caching using the access patterns of friends. Content exchange is kept within the same Internet Service

Provider (ISP) with a drop-in component, that can be deployed by existing web browsers and is independent of the type of

content exchanged. Browsing users online are protected with k -anonymity, where k is the number of users connected to the

same proxy and are able to view the content. 

Instead of optimizing the performance of UGC services exploiting spatial and temporal locality in access patterns,

Huguenin et al., in [56] , show on a large (more than 650,0 0 0 videos) YouTube dataset that content locality (induced by

the related videos feature) and geographic locality are in fact correlated. More specifically, they show how the geographic

view distribution of a video can be inferred to a large extent from that of its related videos, proposing a UGC storage system

that proactively places videos close to the expected requests. Such an approach is extended in our work with the leverage

of information from OSNs. 

An interesting approach [57] applicable to the realm of content delivery is based on an architecture which combines

global learning and local caches with small population. It is shown that age-based thresholds can timely exploit time-

varying popularities to improve caching performance. Moreover, the caching efficiency is maximized by a combination of
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Table 1 

Notation overview. 

G ( V, E ) Graph representing the social network 

V = { V 1 , . . . , V n } Nodes representing the social network users 

E = { E 11 , . . . , E 1 n , . . . , E nn } Edges representing the social network connections, where E ij stands for friendship between i and j 

R = { r 1 , r 2 , . . . , r τ } Regions set 

N = { n 1 , n 2 , . . . , n s } The surrogate servers set. Every surrogate server belongs to a region r i 
C i , i ∈ N Capacity of surrogate server i in bytes 

O = { o 1 , o 2 , . . . , o w } Objects set (videos), denoting the objects users can ask for and share 

S i , o i ∈ O Size of object i in bytes 

i κ Object accessed at the κth iteration, κ: the counter maintained and incremented each time there is a 

request for an object 

�T i κ Number of accesses since the last time object i was accessed 

�i Popularity of object i, i ∈ O 
q i = { t, V ψ , o x } , 1 < x < w , 1 < ψ < n Request i, consists of a timestamp, the id of the user that asked for the object, and the object id 

P = { p 12 , p 13 , . . . , p nw } User posts in the social network, where p ij denotes that node i has shared object j in the social network 

pts i , pte i , 1 < i < τ peak time start and peak time end for each region in secs 

Q = { q 1 , q 2 , . . . , q ζ } Object requests from page containing the media objects, where q i denotes a request for an object of set O 

Q hit , Q total Number of requests served from surrogate servers of the region of the user/ total number of requests 

X, Y ∈ R Closest geographic zones with mutual followers/ with highest centrality metric (lobby-index / HITS) values 

A u 2 v Number of actions where u influenced v 

α, β , γ Coefficients of feature set variables 

U Vector of YouTube interests of user u 

V Vector of Twitter interests of user v 

Score ( u, t ) Score of node u at time t 

dScore = dScore (u, t ) /dt Derivative of Score of node u at time t 

content _ dist Content distance 

 

 

 

 

 

 

 

 

 

 

 

 

 

global learning and clustering of access locations, accompanied by score mechanisms to help with practical issues at local

caches. Practical considerations include, though, the size of the content that circulates over OSN and the long-tail effect,

since the goal of the authors is first to learn a good estimate at the global point and then feed it back to the local caches in

the form of content scores, thus, making the approach possibly prohibitive for OSN-aware content delivery. 

3. Problem description 

We endeavor to mitigate the inherent internet performance issues by improving the CDN infrastructure mechanisms. We

aim at the reduction of the response time for the user, increase of the hit ratio of our request, as well as restriction of

the cost of copying from the origin server to surrogate servers. We consider the network topology, the server location, and

restrictions in the cache capacity of the server. Taking as input data from OSNs and actions of users over them, we want to

recognize objects that will eventually be popular in the realm of the OSN platform. 

We search a dynamic policy such that given a graph G ( V, E ), a set of R regions, where the nodes of the social network

are distributed, and the posts P of the nodes, it will recognize the set of objects O that will be popular only in a subset of

the regions ( Table 1 ), where the content likely to be copied. The policy is represented by the function Put ( n i , Predict ( G, P, R,

O )), which takes as input a surrogate server n i ∈ N and the results of function Predict (set of g objects that will be globally

popular and λ objects that will be locally popular), such that: 

Q hit 

Q total 

(1) 

is maximum, whereas constraint ∑ 

∀ i ∈ O 
S i f ik ≤ C k (2) 

is fulfilled, where: 

f ik = 

{
1 if object i exists in the cache of surrogate server k 
0 if object does not exist 

(3) 

Function Put ( n i , Predict ( G, P, R, O )) returns the set of objects o ∈ O that have to be placed in surrogate server n i ∈ N . 

4. Proposed policies 

Our approach encompasses an algorithm for each new request arriving in the CDN and an algorithm for each new object

in the surrogate server. Internally, the module communicates with the module processing the requests and each addressed

server separately ( Fig. 3 ). 
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Fig. 3. The social-aware CDN mechanism. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1. For every new request in the CDN 

The central idea in all policies for every new request ( timestamp, V i ( t ), o ) in the CDN is to check whether specific time has

passed after the start of the cascade, and then define to what extent the object will be copied. Initially, we check whether

it is its first appearance. The variable o.timestamp depicts the timestamp of the last appearance of the object in a request

and helps in calculating the timer related to the duration of the cascade. If it is the first appearance of the object, the timer

for the object cascade is initialized and o.timestamp takes the value of the timestamp of the request. If the cascade is not

yet complete (its timer has not surpassed a threshold), we check the importance of the user applying the Hubs Authorities

(HITS) algorithm and checking its authority score ( Algorithm 1 ). Additionally we check alternatively the viewership of the

object in the media service platform ( Algorithm 4 ) or if the time of the transmission is not within the peak-time range of

the region of the user ( Algorithm 5 ) [58] . 

Algorithm 1 Social Prefetcher. 

if o.timestamp == 0 then 

o.timer = 0 

o.timestamp = request _ timestamp 

else if o.timestamp != 0 then 

o.timer = o.timer + ( request _ timestamp - o.timestamp) 

o.timestamp = request _ timestamp 

end if 

if o.timer > time _ threshold then 

o.timer = 0 

o.timestamp = 0 

else if o.t imer < t ime _ t hreshold and ̃user.aut hority _ score > aut hority _ t hreshold then 

copy object o to surrogate that serves user’s V i geographic zone 

for user V y that follows user V i do 

find surrogate server n j that serves V y ’s geographic zone 

copy object o to n j 
end for 

else if o.t imer < t ime _ threshold then 

copy object o to surrogates n j that Subpolicy Lobby-index or Subpolicy HITS decides 

end if 

For users with a high authority score, we copy the object to all surrogate servers of the user’s geographic zone and to the

surrogate servers serving the geographic zones of all followers of the user (global prefetching). Otherwise, selective copying

includes only the surrogates that the subpolicy decides (local prefetching). Subpolicies check the X closest geographic zones

where a user has mutual friends and out of them, the Y with the highest value of the centrality metric as an average,

denoting that the object is likely to be asked for more times. Copying is performed to the surrogate servers that serve the

above geographic zones. Subpolicies for the plain algorithm, i.e. Subpolicy Lobby-index and Subpolicy HITS ( Algorithms 2

and 3 ), include lobby-index and HITS ranking of geographic zones, respectively. For modified policies ( Algorithms 4–6 ) only
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HITS ranking, that performed better in the plain simulation framework experiments, is applied (Subpolicies: Algorithms 3

and 7 ). 

Algorithm 2 Subpolicy Lobby-index. 

find X geographic zones where (user V i has mutual followers and ̃they are closer to user’s V i geographic zone) 

find the L ⊆ X that have the highest Lobby − index score 

for geographic zones that belong to L do 

find surrogate server n j that serves geographic zone 

copy object o to n j 
end for 

Algorithm 3 Subpolicy HITS. 

find X geographic zones where (user V i has mutual followers and ̃they are closer to user’s V i geographic zone 

find the H ⊆ X that have the highest HIT S score 

for geographic zones that belong to H do 

find surrogate server n j that serves geographic zone 

copy object o to n j 
end for 

Algorithm 4 Popular Items. 

if o.timestamp == 0 then 

o.timer = 0 

o.timestamp = request _ timestamp 

else if o.timestamp != 0 then 

o.timer = o.timer + ( request _ timestamp - o.timestamp) 

o.timestamp = request _ timestamp 

end if 

if o.timer > time _ threshold then 

o.timer = 0 

o.timestamp = 0 

else if o.t imer < t ime _ t hreshold and ̃user.aut hority _ score > aut hority _ t hreshold then 

copy object o to surrogate that serves user’s V i geographic zone 

for user V y that follows user V i do 

find surrogate server n j that serves V y ’s geographic zone 

copy object o to n j 
end for 

else if o.t imer < t ime _ t hreshold and ̃o. �i > �i _ t hreshold then 

copy object o to surrogates n j that Subpolicy HITS decides 

end if 

The heuristics applied in our approach are based on the observations that users are more influenced by geographically

close friends, and moreover by mutual followers, social cascades have a short duration, whereas the majority of cascades

end within 24 h [7] . However, we introduce a varying time threshold for the cascade effect and the time that an object

remains in cache. Values given in the time threshold variable also include 48 hours, as well as threshold covering the entire

percentage of requests. 

Towards the direction of studying the evolution of social cascades that could lead to reduction schemes for the storage

of whole sequences of large social graphs and the reduction of their processing time, we devised a simple Predictive Model

for efficient calculation of the number of retweets of a video [59] and we proceed to incorporate it into our simulation

framework ( Algorithm 6 ). The number of retweets including a video link is associated within the model with a score de-

picting the influence of its uploader in the Twitter dataset ( Score ( u, t )), the increasing or decreasing trend the score depicts

( dScore = dScore (u, t ) /dt ) as well as the distance of content interests among users of the YouTube and Twitter community

( content _ dist). The validity of the predictors is analyzed in [59] , whereas the intuition for their selection is based on the

notion, that, the higher influence score a node depicts, the more influence it is expected to exert on other nodes of the

social graph. Moreover, the dScore / dt ( u, t ) expresses the popularity rise / fall of the node, and, lastly, the content distance

associates the resource with the user context. 

Detection of interests of users was conducted through analysis of the interests of the users they follow against directory

information from http://wefollow.com , a website listing Twitter users for different topics along with a value indicating the

http://wefollow.com
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Algorithm 5 Efficient Timing. 

if o.timestamp == 0 then 

o.timer = 0 

o.timestamp = request _ timestamp 

else if o.timestamp != 0 then 

o.timer = o.timer + ( request _ timestamp - o.timestamp) 

o.timestamp = request _ timestamp 

end if 

if o.timer > time _ threshold then 

o.timer = 0 

o.timestamp = 0 

else if o.t imer < t ime _ t hreshold and ̃user.aut hority _ score > aut hority _ t hreshold then 

copy object o to surrogate that serves user’s V i geographic zone 

for user V y that follows user V i do 

find surrogate server n j that serves V y ’s geographic zone 

copy object o to n j 
end for 

else if o.timer < time_threshold then 

if o.t imestamp � (pt s r V i 
, pte r V i 

) and ̃o.t imestamp � (pt s r n j 
, pte r n j 

) then 

copy object o to surrogates n j that Subpolicy HITS decides 

end if 

end if 

Algorithm 6 Predictive Model. 

if o.timestamp == 0 then 

o.timer = 0 

o.timestamp = request _ timestamp 

else if o.timestamp != 0 then 

o.timer = o.timer + ( request _ timestamp - o.timestamp) 

o.timestamp = request _ timestamp 

end if 

if o.t imer > t ime _ threshold then 

o.timer = 0 

o.timestamp = 0 

else if o.t imer < t ime _ thr eshold and ̃ user.Scor e > Scor e _ thr eshold then 

copy object o to surrogate that serves user’s V i (t) geographic zone 

for user V y (t) that follows user V i (t) do 

find surrogate server n j that serves V y (t) ’s geographic zone 

copy object o to n j 
end for 

else if o.t imer < t ime _ threshold then 

copy object o to surrogates n j that Subpolicy Score decides 

end if 

Algorithm 7 Subpolicy Score. 

find the Y geographic zones that depict the highest average values of Predictive Model( Score , dScore , content _ dist) for user 

V i (t) 

for geographic zones that belong to Y do 

find surrogate server n j that serves geographic zone 

copy object o to n j 
end for 

 

 

 

 

 

importance of the user in the respective field. Interests of users in YouTube were calculated with a mapping of YouTube

video categories to http://wefollow.com categories, as well, according to [60] . 

User score is calculated combining the number n f of its followers, reduced by a factor of 100 to compensate the wide

range of followers in the dataset from zero to more than a million, a quantity b catering for users with reciprocal follower-

ship, calculated by taking an average of number of a user’s followers to the number of users he follows, as well as the effect

e of a user’s tweet, measured by multiplying average number of retweets with number of user’s tweets and normalizing it

http://wefollow.com
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to correspond to the total number of tweets. The distribution of these combined metrics depicts large variance and we have

applied a logarithmic transformation in order to avoid the uneven leverage of extreme values. 

Score = log 

(
n f + 

((
b 

100 

)
× n f 

)
+ e 

)
(4) 

Content distance is calculated using cosine similarity between vectors of user’s u YouTube ( U ) and user’s v Twitter video

interests ( V ), as follows: 

content _ dist = 1 − U · V 

‖ U‖‖ V ‖ 

(5) 

Our model is expressed as the linear combination of Score ( u, t ), dScore ( u, t )/ dt and content _ dist, and its predicted output

(total number of predicted values) expressed by A u 2 v is: 

A u 2 v = 0 . 1460 × Score (u, t) + 0 . 0200 × dScore (u, t) 

dt 
+ 0 . 1656 × content _ dist (6)

For users with Score surpassing a threshold (average value: 1.2943 in the dataset), we copy the object to all surrogate

servers of the user’s geographic zone and to the surrogate servers serving the geographic zones of all user’s followers. Oth-

erwise, selective copying includes only the surrogates that Subpolicy Score decides. Subpolicy Score checks the Y geographic

zones with the highest value of the combined feature set (Predictive Model( Score, dScore , content _ dist)) as an average. Copy-

ing is performed to the surrogate servers that serve the Y geographic zones of highest combined feature set value, according

to the coefficients derived from our analysis. 

Algorithm 8 Caching scheme LRU / LFU / SIZE. 

if o.size + current _ cache _ size ≤ total _ cache _ size then 

copy object o to cache of surrogate n k 
else if o.size + current _ cache _ size > total _ cache _ size then 

while o.size + current _ cache _ size > total _ cache _ size do 

for object o ′ in current _ cache do 

if ( current _ timestamp - o ′ .timestamp) + o ′ .timer > time _ threshold then 

copy o ′ in Cand id ateList 

end if 

if Cand id ateList.size > 0 and ̃Cand id ateList.size ! = total _ cache _ size then 

find o ′ that o ′ .timestamp is maximum and delete it 

else if Cand id ateList.size == 0 ∨ Cand id ateList.size == total _ cache _ size then 

use LRU/LFU/SIZE to delete any object o ∈ O 

end if 

end for 

end while 

put object o to cache of surrogate n k 
end if 

4.2. For every new object in the surrogate server 

Surrogate servers keep replicas of the web objects on behalf of content providers. In the case that the new object o

in the surrogate server n k does not fit in the surrogate server’s cache, we define the time_threshold as the parameter for

the duration that an object remains cached. We check for items that have remained cached for a period longer than the

time_threshold and we delete those with the largest timestamp in the cascade. In case there exist no such objects or all

objects have the same timestamp, we apply various policies for the removal of objects ( Algorithm 7 ): 

• Least Recently Used (LRU): In the most straightforward extension of LRU for handling non-homogeneous sized objects

we prune the least recently used items first. The algorithm keeps track of what was used when, to make sure that it

discards the least recently used item. 

• Least Frequently Used (LFU): The algorithm keeps track of the number of times an object is referenced in memory.

When the cache is full and more room is required, it purges the item with the lowest reference frequency. We simply

employ an LFU algorithm by assigning a counter to every object that is loaded into the cache. Each time a reference

is made to that object the counter is increased by one. When the cache reaches capacity and a new object arrives, the

system will search for the object with the lowest counter and remove it from the cache. 

• Size-adjusted LRU (SIZE): The optimization model devised in [61] to generalize LRU is approximately solved by a simple

heuristic and the policy is called Size-adjusted LRU or SIZE. In this policy the objects are removed in order of size with

the largest object removed first. In case two objects have the same size, objects longer cached since their last access are
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Table 2 

Twitter dataset tweet information. 

Id Tweet id 

Text Tweet content 

Created_at Time of creation 

Retweeted If it is retweet 

In_reply_to_status_id Status id of the tweet to which it replies 

In_reply_to_user_id User id of the tweet to which it replies 

Urls Urls included 

Retweet_count Number of retweets 

Table 3 

Twitter dataset user information. 

Id User id 

Verified If user has verified email 

Followers_count Number of user’s followers 

Protected If user’s information is private 

Listed_count How many tweets refer the user 

Statuses_count How many tweets the user has published 

Friends_count How many users the user follows 

Location Explicit location of the user 

Geo_enabled If the service denoting the user location along with tweet is enabled 

Lang User language 

Favourites_count How many tweets user has added to favourites 

Created_at Time of creation 

Time_zone Timezone of the user 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

removed first. Objects in the cache are reindexed in order of increasing values of S i · �T i κ and highest index objects are

greedily selected and purged from the cache until the new object fits in. 

We selected the caching schemes applied among a variety of caching algorithms: modified LRU (mLRU), scoring based

caching algorithm (SC), Cache Management based on Temporal Pattern Solicitation (CMTPS) algorithm, etc. Our selection

was based on the criteria of time complexity and ease of implementation within the CDN simulator framework [62] . 

LRU supports the fundamental locality principle that if a process visits a location in the memory, it will probably revisit

the location and its neighbourhood soon, and being implemented by a double linked list, it gives operations of an O (1)

complexity (When a page in the list is accessed, it will be moved from its place to the end of the list. When a new page is

accessed, it will be put in the end of the list and the oldest page is taken out of the list.). It poses, though, the problem of

what will happen when a process scans a huge surrogate server cache. LFU overcomes this problem as it takes into account

the advanced locality principle, that claims that the probability of revisiting will be increased if the number of the visits is

bigger. LFU is implemented by a heap and thus has a logarithmic complexity for adding / removing a page from the heap,

as well as updating the position of a page in the heap. Stale objects can remain a long time in the memory, while popular

objects can be mistakenly removed [63] . 

A brief categorization [61] of cache replacement schemes for the web includes following categories: 

• (i) Direct extensions of traditional policies: such as Least Frequently Used (LFU) and First In First Out (FIFO) besides LRU,

which do not in general pay sufficient attention to object sizes. 

• (ii) Key-based policies: objects are sorted based on a primary key, break ties based on a secondary key, break remaining

ties based on a tertiary key and so on. The idea in using the key-based policies is to prioritize some replacement factors

over others, although this prioritization may not always be the best case. 

• (iii) Function-based replacement policies: They employ a function of various factors such as time since last access, en-

try time of the object in the cache, transfer time cost, object expiration time, etc. For example, Least Normalized Cost

Replacement (LNC-R) algorithm employs a rational function of the access frequency, the transfer time cost and the size. 

5. Experimental evaluation 

• Dataset: Experimentation is conducted on a Twitter dataset containing geographic locations, follower lists and tweets

for 37 million users. We take into account the spreading of more than one million YouTube videos over this network,

a corpus of more than 2 billions messages and approximately 1.3 million single messages with a video link extracted

(information contained in dataset depicted in Tables 2 , 3 ). Information for the Youtube users and videos contained in the

dataset is depicted in Tables 4 and 5 , respectively. 

Although our simulations are focused only on YouTube and Twitter, their wide popularity and massive user base allow us

to obtain insights regarding user navigation behavior on other similar media and microblogging platforms, respectively.
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Table 4 

YouTube dataset user information. 

Id User id 

num_youtube_videos_shared Number of YouTube videos shared by the user 

num_of_views_for_videos_shared_by_this_user Number of views of videos shared by the user 

num_of_comments Number of comments of the user 

categories categories the user is interested in 

Table 5 

YouTube dataset video information. 

id video id 

video_title title of the video 

video_uploader id of the uploader 

video_views_number number of the video views 

video_favorited_times number of the times the video was favorited 

video_raters_number number of the video raters 

video_likes_number video likes number 

video_dislikes_number video dislikes number 

video_total_number_comments total number of comments 

video_uploaded_time uploading time 

category category of the video 

Freebase_topic_id list of Freebase topics of the video 

Table 6 

(a) Simulation characteristics and (b) Distribution of servers over the 

world for the experimental evaluation. 

Topology nodes 3500 

Redirection policy Closest surrogate 

Origin servers 1 

Surrogate servers 423 

User groups 162 

Bandwidth 100 Mbit/sec 

City Servers City Servers 

Washington DC 55 Toronto 12 

New York 43 Amsterdam 20 

Atlanta 11 London 30 

Miami 11 Frankfurt 31 

Chicago 37 Paris 12 

Dallas 19 Moscow 10 

Los Angeles 52 Hong Kong 8 

San Jose 37 Tokyo 12 

Seattle 15 Changi 5 

Phoenix 3 Sydney 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vine [64] , for example, which is a short-form video sharing service acquired from Twitter that allows users to record

and edit five- to six-second-long looping video clips, can also exploit such a mechanism for sharing videos. 

• Simulation configuration: The configuration of the simulation values for the stand-alone CDN simulator is depicted in

Table 6 (a). For the extraction of a reliable output, we had to conclude to a specific network topology, as well as make

assumptions regarding the input dataset. The simulator takes as input files describing the underlying CDN and the traffic

in the network, and provides an output of statistical results, discussed in the next Section. 

• Network topology: There follows a short description of the process defining the nodes in the topology. These nodes

represent the surrogate servers, the origin server, and the users requesting the objects ( Fig. 4 ). To simulate our policy

and place the servers in a real geographical position, we used the geographical distribution of the Limelight network

[65] . For the smooth operation of the simulator the number of surrogate servers was reduced by a ratio of 10%, to

ultimately include 423 servers ( Table 6 (b)). Depending on the closer distance between the surrogate region defined by

Limelight and each of the geographic zones defined by Twitter (20 Limelight regions, 142 Twitter geographic zones), we

decided where the requests from each geographic zone will be redirected. The population of each geographic zone was

also taken into consideration. The INET generator [66] allowed us to create an AS-level representation of the network

topology. Topology coordinates were converted to geographical coordinates with the NetGeo tool from CAIDA [67] , a tool

that maps IP addresses and Autonomous System (AS) coordinates to geographical coordinates [68] , and surrogate servers

were assigned to topology nodes. 
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We define the regions with surrogate servers (Limelight)

We define the number of surrogate servers in every region (Limelight – 10% reduction)

We assign surrogate servers for serving request in every time zone

We convert the topology coordinates into geographical coordinates (NetGeo)

We assign the surrogate servers to nodes in the topology

Fig. 4. Methodology followed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After grouping users with explicit location provided by Twitter according to their geographic zone (due to the limitations

the large dataset imposes), each group of users was placed in a topology node. We placed the user groups in the nodes

closer to those comprising the servers that serve the respective geographic zone requests, contributing this way to a

realistic network depiction. 

• Number of requests: 1 million requests were considered sufficient, with the number of objects being the dominant

factor increasing the memory use of the simulation tool. Also similar concept approaches use similar number of requests

( [24] on a daily basis and [31] ), and same number of distinct videos for generation of requests. 

• Cache size: The requests generated from the generator follow a long-tail distribution, thus 15% of the whole catalog size

was considered to be sufficient. 

• Threshold values: Experimenting was conducted for time thresholds of 24 h and 48 h, as well as for the time threshold

that covered all the requests. The threshold for media service viewership was set at 402.408 (average media viewership

in the dataset). The authority threshold score was tested for various values (0.006 / 0.02 / 0.04). 

• Classification methods: To compare Predictive Model Algorithm with other methods we assumed that if A u 2 v crosses

a threshold, e.g. 30%, i.e., if more than 30% tweets of user u are retweeted by others users, then user u can be con-

sidered as a popular user, hence we handled our problem as a binary classification problem. Comparative classification

was conducted with: Linear Regression, i.e., the suggested Predictive Model, Random Forest, Naive Bayes, Support Vec-

tor Machines (SVM), Stochastic Gradient Descent (SGD) and K-Nearest Neighbours (KNN) and we experimented with

the respective confidence scores of all the aforementioned classifiers in Predictive Model Algorithm. Thus, modifica-

tions include the replacement of the geographic zones depicting the highest average values of Predictive Model( Score,

dScore , content _ dist), with those being derived from the application of Naive Bayes, Random Forest, SVM, SGD, and KNN

schemes. 

– SVM : is a supervised learning model with associated learning algorithm that analyzes data used for classification and

regression analysis. Given a set of training examples, each marked to belong to one of the two categories (popular/

non-popular user), the SVM training algorithm builds a model that assigns new examples into each of the categories,

acting as a non-probabilistic binary linear classifier. 

– SGD : is a gradient descent optimization method for minimizing an objective function written as a sum of differen-

tiable functions. It encompasses a popular algorithm for training a wide range of models in machine learning, includ-

ing linear support vector machines, logistic regression and graphical models. Its use for training artificial networks is

motivated by the high cost of running backpropagation algorithm over the full training set, as SGD overcomes this

cost and still leads to fast convergence. 

– KNN : is a method classifying objects based on closest training examples in the feature space. The input consists

of positive, typically small, integer -15 in our case- of closest training examples in the feature space. In KNN

classification, the output is a class membership (popular/ non-popular user), whereas an object is classified by a

majority vote of its neighbours, with the object being assigned to the class most common among its K-Nearest
Neighbours. 
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Fig. 5. Summary - Average M.R.T. Values for X = 10 Closest Timezones of Mutual Friends for threshold covering all requests. 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Main findings 

The statistic reports produced by the simulator are used to evaluate the proposed policies. There follows a short expla-

nation of the metrics used in our experiments for the extraction of statistical results. For detailed results for selected cases,

results for varying number of geographic zones, as well as additional server-side and network-side statistics you can refer

to [7,59] . 

Client side measurements 

They refer to activities of clients, namely, the requests for objects. 

• Mean response time (M.R.T.) : indicates how fast a client is satisfied. It is defined as 

M−1 ∑ 

i =0 

t i 

M 

, where M is the number of

satisfied requests and t i is the response time of the i th request. It starts at the timestamp when the request begins and

ends at the timestamp when the connection closes. 

Surrogate side measurements 

They are focused on the operations of the surrogate servers. 

• Hit ratio : is the percentage of the client-to-CDN requests resulting in a cache hit. High values indicate high quality

content placement of the surrogate servers. 

Network statistics 

They run on top of TCP/IP and concern the entire network topology. 

• Mean surrogate servers utility : is a value that expresses the relation between the number of bytes of the served content

against the number of bytes of the pulled content (from the origin server or other surrogate servers). It is bounded to

the range [0, 1] and provides an indication about the CDN performance. High net utility values indicate good content

outsourcing policy and improved M.R.T.s for the clients. 

6.1. Impact on metrics 

Table 7 presents the average values for all cases of testing and Fig. 5 the summary of average M.R.T. Values for X = 10

Closest Timezones of Mutual Friends for threshold covering all requests. As the time threshold increases from 24 to 48 h and

to hours covering the entire set of requests, we observe that the Mean Response Time decreases steadily. At the same time

Hit Ratio and Mean Utility of Surrogate Servers increase. Here, we present indicative values for the 10 closest geographic
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Table 7 

Average metric values for X = 10 timezones of close mutual friends. 

Policy Mean response time 

(Avg, 10 −2 sec.) 

Hit ratio % Mean surrogate 

server utility % 

Popular Items - 24-h 1 .1383 32 .81 96 .01 

Popular Items - 48-h 1 .1352 33 .08 96 .01 

Popular Items - all-h 1 .1172 34 .58 96 .04 

LFU - 24-h 1 .1121 32 .87 96 .17 

LFU - 48-h 1 .1117 33 .26 96 .23 

LFU - all-h 1 .1112 34 .61 96 .60 

SIZE - 24-h 1 .1261 32 .10 95 .42 

SIZE - 48-h 1 .1270 32 .39 95 .98 

SIZE - all-h 1 .1274 33 .78 95 .99 

LRU - 24-h 1 .1158 32 .77 96 .00 

LRU - 48-h 1 .1166 33 .06 96 .01 

LRU - all-h 1 .1172 34 .42 96 .01 

Efficient Timing - 24-h 1 .1411 32 .74 95 .97 

Efficient Timing - 48-h 1 .1376 32 .61 95 .99 

Efficient Timing - all-h 1 .1174 34 .38 96 .01 

Predictive Model (LR)- 24-h 1 .0666 33 .80 97 .00 

Predictive Model (LR)- 48-h 1 .0662 33 .84 97 .10 

Predictive Model (LR)- all-h 1 .0647 34 .92 97 .38 

Social Prefetcher 24-h 1 .1412 32 .12 95 .98 

Social Prefetcher 48-h 1 .1377 32 .42 96 .00 

Social Prefetcher all-h 1 .1181 34 .16 96 .01 

Predictive Model (SGD)- 24-h 1 .2401 32 .28 95 .90 

Predictive Model (SGD)- 48-h 1 .2389 32 .54 95 .99 

Predictive Model (SGD)- all-h 1 .2364 33 .99 96 .00 

Predictive Model (SVM)- 24-h 1 .2268 32 .25 95 .86 

Predictive Model (SVM)- 48-h 1 .2249 32 .26 95 .91 

Predictive Model (SVM)- all-h 1 .2232 33 .83 95 .94 

Predictive Model (RF)- 24-h 1 .2270 32 .23 95 .81 

Predictive Model (RF)- 48-h 1 .2266 32 .25 95 .89 

Predictive Model (RF)- all-h 1 .2252 33 .81 95 .94 

Predictive Model (NB)- 24-h 1 .2463 32 .21 95 .77 

Predictive Model (NB)- 48-h 1 .2451 32 .22 95 .79 

Predictive Model (NB)- all-h 1 .2437 33 .76 95 .63 

Predictive Model (KNN)- 24-h 1 .2655 32 .17 95 .61 

Predictive Model (KNN)- 48-h 1 .2637 32 .21 95 .70 

Predictive Model (KNN)- all-h 1 .2611 33 .68 95 .79 

Plain CDN Simulator - Push 1 .4471 31 .10 94 .03 

Plain CDN Simulator - Pull 1 .8460 30 .97 94 .42 

Tailgate 1 .2714 32 .11 95 .57 

Buzztraq 1 .3950 31 .00 94 .98 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

zones of mutual followers and experiments were conducted for varying subsets of 1, 5 and 10 geographic zones with the

highest influence metric, respectively, where copying will ultimately be performed for all policies. The lowest M.R.T.s appear

for the cases of the time threshold covering all requests for all the policies. In general, between Popular Items and Efficient

Timing we observe a better performance in terms of M.R.T.s achieved for the Popular Items, where the viewership within

the YouTube platform is considered. All policies perform better than the plain Social Prefetcher approach apart from SIZE

policy, which however performs better than plain CDN Simulator Push and Pull policies. The caching scheme of LFU appears

to perform better than the LRU scheme. LRU and LFU offer comparable results, whereas they both outperform SIZE. We

come to the conclusion that there is a realistic room for performance improvement by implementing various web caching

characteristics in a CDN infrastructure, even though the social cascading mechanisms have already been activated to improve

its performance. 

For the most representative case of all requests for LRU and LFU schemes, the trade-off between the reduction of the

response time and the cost of copying in servers is expressed with a decrease of the M.R.T. (and increase of Hit Ratio and

Mean Surrogate Servers Utility, respectively) as the geographic zones increase, and a point after which the M.R.T. starts to

increase again. This decrease in the M.R.T. occurs with approximately 5 geographic zones out of the 10 used for LRU scheme

(for a fixed number of closest geographic zones with mutual followers), and with 7 geographic zones for LFU. After this

point the slight increase in the M.R.T. is attributed to the delay for copying content to surrogate servers. The cost for every

copy is related to the number of hops among the client asking for it and the server where copying is likely to be made,

according to the Put function. We observe that SIZE depicts a poor performance, since it does not take advantage of the

frequency skew. 

The trade-off between the reduction of the response time and the cost of copying in servers is expressed for all schemes

used with an M.R.T. decrease as number of examined X geographic zones increase, and a point after which the MRT starts



130 I. Kilanioti, G. A. Papadopoulos / Simulation Modelling Practice and Theory 71 (2017) 114–133 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

to increase again [59] . For the scheme augmented with our Predictive Model, namely the Linear Regression, for example,

this shift occurs with approximately 6 geographic zones out of the 10 used (for a fixed number of closest geographic zones

with mutual followers), whereas the system is faster burdened for Popular Items and Efficient Timing (switchpoint with 4

geographic zones). After this point the slight increase in the MRT is attributed to the delay for copying content to surrogate

servers. The cost for every copy is related to the number of hops among the client asking for it and the server where copying

is likely to take place. We observe that Linear Regression outperforms all the other schemes, depicting MRTs smaller than

their respective. We note here that geographic zones with highest average values for each scheme, that Subpolicy defines,

are pre-calculated, in order to reduce computational burden in the simulations. 

6.2. Comparison with other works 

Concerning comparison with related works, storage issue is not addressed in [24] and its performance is measured with

a ratio of download times for buffering stage of videos, that do not coincide with the response times a CDN measures. We

note, though, that with the policy proposed herein, there is a significant improvement of the Social Prefetcher framework

as a whole over their respective improvement (30%) in pull-based methods employed by most CDNs. Moreover, in our

approach, we use a more refined topology of data centers and take storage issues into account. Although the proliferation of

cloud services has led to a reduction in storage costs over the past years, storage costs still remain a significant factor that

can be reduced under certain conditions. 

In terms of performance, we note that with even with the plain Social Pefetcher policy proposed herein, there is a signif-

icant improvement over the respective improvement (39.43% only for the plain Social Prefetcher, upto 42.32% for Predictive

Model(LR), whereas 30% in [24] ) of other methods in pull-based methods employed by most CDNs, even though they more-

over overlook storage issues of the distributed infrastructure. 

Social Prefetcher algorithm depicts smaller response times compared to the implementation of other algorithms for con-

tent delivery within the Social Prefetcher framework, e.g. plain Location Based Placement (LBP) algorithm for k re = 3 loca-

tions incorporated in our framework depicts a M.R.T. of 17.32023 ms., Buzztraq [25] incorporated in our framework depicts

a M.R.T. of 13.95011 ms., and Tailgate algorithm [24] depicts a M.R.T. of 12.71411 ms. for the case of Full Information/ Perfect

Reads, that the system has access to the social graph. 

We note here that LBP uses the geographical location of recent users to place replicas, whereas social cascade pre-

diction [25] places replicas in regions where the social cascade is densest, as determined by the average number of

friends who have accessed the UGC. These strategies are evaluated in the specific case where the UGC provider is al-

lowed to place a fixed number, k re , of replicas ( k re = 3). Hence, the LBP strategy amounts to placing the replicas in the

top k re regions ranked by number of recent users, whereas social cascade prediction ranks regions by the number of

friends of previous users and places replicas in the top k re regions. Buzztraq is expected to work better if there is a

strong social cascade component driving the user accesses, since it uses the history of social cascades (i.e. how many

friends of a visitor also accessed the content) in contradiction to the history of previous accesses to predict future accesses

(LBP). 

6.3. Comparison with static approaches 

Concerning comparison with static approaches, namely those that do not include the social-awareness component, Plain

CDN Simulator - Push case (M.R.T. 14.471 ms.) refers to proactive prefetching of content to all surrogate servers. In this

case the M.R.T. becomes minimum for the plain simulator, since every request is bound to be satisfied, whereas the content

copying cost is maximum. In the Plain CDN Simulator - Pull case (M.R.T. 18.460 ms.) content is forwarded to the surrogate

server at the moment the user asks for it, hence, the copying cost becomes minimum, but the response time is maximum

for the plain simulator. 

Most observed systems are assumed to be of either pure-push or pure-pull type with pure-push systems being, in fact,

pure-broadcast and pure-pull systems, on the other hand, being pure-unicast [69] . Practically, however, most systems com-

bine both forms of data communication, push and pull. The pull policy is typically used for personalized information, while

the push policy deals with information that is in high demand by users. Most modern CDNs still deploy both pull and push

zones, with pulling being the most dominant case. Pull zones are more frequently used simply because they more easily

automatically cache assets of the clients. However, push zones are still used, but they usually concern dealing with host-

ing large files or static assets that do not frequently change. Small objects of inherent virality and limited duration should

ideally be pulled by the CDN. 

We notice that Social Prefetcher approach outperforms both Plain CDN Simulator - Push and Plain Simulator - Pull poli-

cies for the case of 15% of the whole catalog size used in our experiments. The performance of pull and push strategies

varies in regard to the load with pull strategies achieving a lower M.R.T. under high loads and push strategies being supe-

rior under low to medium loads [70–72] . 

Plain CDN Simulator - Push case refers to proactive prefetching of content to all surrogate servers. In this case the M.R.T.

becomes minimum for the plain simulator, since every request is bound to be satisfied, whereas the content copying cost

is maximum. In the Plain CDN Simulator - Pull case content is forwarded to the surrogate server at the moment the user

asks for it, hence, the copying cost becomes minimum, but the response time is maximum for the plain simulator. Most
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observed systems are assumed to be of either pure-push or pure-pull type. Practically, however, most systems combine

both forms of data communication, push and pull. The pull policy is typically used for personalized information, while the

push policy deals with information that is in high demand by users. Most modern CDNs still deploy both pull and push

zones, with pulling being the most dominant case. Pull zones are more frequently used simply because they more easily

automatically cache assets of the clients. However, push zones are still used, but usually when dealing with hosting large

files or static assets that dont frequently change as often. Small objects with inherent virality and limited duration should

ideally be pulled by the CDN. 

6.4. Caching schemes performance 

In our example LFU performs best, and SIZE depicts a poor performance compared with the two other schemes, as it

is unable to take advantage of the frequency skew. In our study the objects’ sizes follow a zipf-distribution. As studies

[61] depict, the effect of cost correlation with size has the greatest effect on the performance of SIZE algorithm, which dis-

criminates against larger objects, -affecting the storage needs of our infrastructure- and the least effect on the LRU scheme,

the performance of which remains unchanged. Consequently, when cost correlation with size increases, the cost savings are

reduced as well, even though the hit ratios are the same. 

When we consider which objects to replace when a new object enters a web cache we should consider not only the

relative frequency but also factors such as object sizes, transfer time savings and expiration times. Thus, additional suggested

features could be: the handling of object expiration times, enforcement of an admission control policy which will decide if

object will be cached or not in the first place, that will eliminate the disruption caused from the addition of an object in

cache and the necessary removal of other objects, and is significant for caching of non-uniform sized objects. 

7. Conclusions 

In the present work, we comparatively study modified dynamic policies of OSN content prefetching. The modifications

concern parameters of temporal or contextual nature, as well as fundamental parameters associated with the content de-

livery infrastructure. Bandwidth-intensive multimedia delivery over a CDN infrastructure is experimentally evaluated with

laborious simulations, taking into account features of the network that works in the related literature overlook. Although

we recognize the focused scope of this work and the limitations of its conduction solely with Twitter and YouTube data,

the scale of the media allows us to make assumptions for generalization across different OSNs and microblog platforms.

We believe that our results are generally applicable, with a potentially high impact for large-scale systems where traffic is

generated by online social services and microblogging platforms. Future extensions include experimentation with various

score assignment formulas, as well as subsequent verification in the realm of content delivery. We believe that the simula-

tion framework we introduce can serve as the basis of further parameterized content delivery experimentation that exploits

information transmission over OSNs, and we hope that our findings will broaden the view on the spread of information in

the web. 

In the future, we could implement and experiment on variations of dynamic policy that aim to improve it with more

complex functions that incorporate more refined handling of the time differences (enriched with diurnal trends) and exploit

load-balancing among surrogate servers.Whereas our study is limited to a specific OSN and media service, our results are

generally applicable with a potentially high impact for large-scale systems with traffic generated by online social services

and microblogging platforms. As the number of internet users increases dramatically and OSNs open new perspectives in the

improvement of Internet-based content technologies, new issues in the architecture, design and implementation of existing

CDNs arise. Our research agenda includes the generalization of proposed policy to deal with multiple OSN platforms and

mobile CDN providers. 
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