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FUNDAMENTAL

CONCEPTS
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What is Spark ?

Apache Spark is a high-performance, general-purpose distributed computing system that has become the 
most active Apache open source project, with more than 1,000 active contributors (from High Performance 
Spark, O’Reilly, 2017).

In brief, Spark is a UNIFIED platform for cluster computing, enabling efficient big data management and 
analytics.

It is an Apache Project and its current release is 2.3.1 (June 8, 2018) previous release 2.3.0 (February 28, 2018)

It is one of the most active Apache projects:

1.0.0    -   May 30, 2014
1.0.1    -   July 11, 2014
1.0.2    -   August 5, 2014
1.1.0    -   September 11, 2014
1.1.1    -   November 26, 2014
1.2.0    -   December 18, 2014
1.2.1    -   February 9, 2014
1.3.0    -   March 13, 2015
1.3.1    -   April 17, 2015
1.4.0    -  June 11, 2015 

1.4.1  -  July 15, 2015
1.5.0  -  September 9, 2015
1.5.1  -  October 2, 2015
1.5.2  -  November 9, 2015
1.6.0  -  January 4, 2016
1.6.1  -  March 9, 2016
1.6.2  -  June 25, 2016
2.0.0  -  July 26, 2016
2.0.1  - October 3, 2016
2.0.2  - November 14, 2016 

2.1.0  -  December 28, 2016
2.1.1  -  March 2, 2017
2.2.0  -  Jully 11, 2017
2.2.1   - December 1, 2017
2.3.0  – February 28, 2018
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Who Invented Spark ?

University of Waterloo (B.Sc. Mathematics, Honors Computer Science)
Berkeley (Ph.D. cluster computing, big data)

Now: Assistant Professor @ CSAIL MIT

He also co-designed the MESOS cluster 
manager and he contributed to Hadoop 
fair scheduler.

Matei Zaharia

Born in Romania
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Who Can Benefit from Spark ?

Spark is an excellent platform for:

- Data Scientists: Spark's collection of data-focused tools helps data 
scientists to go beyond  problems that fit in a single machine

- Engineers: Application development in Spark is far more easy than other 
alternatives. Spark's unified approach eliminates the need to use many 
different special-purpose platforms for streaming, machine learning, and 
graph analytics.

- Students: The rich API provided by Spark makes it extremely easy to 
learn  data analysis and program development in Java, Scala or Python.

- Researchers: New opportunities exist for designing distributed algorithms 
and testing their performance in clusters. 
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Spark in the Hadoop Ecosystem

Hadoop Distributed File System (HDFS)

Hadoop MapReduce

Pig
(Scripts)

Hive
(SQL queries)

Mahout
(Machine Learning)

Hbase
(NoSQL)

Ambari
(Provisioning, Management, Monitoring)
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Yet Another Resource Negotiator (YARN)

Other
Frameworks

Spark is somewhere here
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Spark vs Hadoop MR: sorting 1PB

                                   Hadoop                     Spark 100TB          Spark 1PB

Data Size                102.5 TB                  100 TB                  1000 TB

Elapsed Time        72 mins                  23 mins                  234 mins

# Nodes                    2100                          206                          190

# Cores                    50400                      6592                      6080

# Reducers            10,000                      29,000                  250,000

Rate                        1.42 TB/min              4.27 TB/min          4.27 TB/min

Rate/node                0.67 GB/min              20.7 GB/min          22.5 GB/min

Source: Databricks
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Spark Basics

Spark is designed to be fast and general purpose.

The main functionality is implemented in Spark Core. Other 
components exist, that integrate tightly with Spark Core.

Benefits of tight integration:

- improvements in Core propagate to higher components

- it offers one unified environment
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Spark Basics: architecture

SQL
and

DataFrames
Streaming

MLlib
and 
ML

GraphX
HDFS

Cassandra
Mesos YARN

Standalone
Scheduler

Local FS

Amazon S3

Hive

Hbase

CORE

INPUT/OUTPUT CLUSTER MANAGER

LIBS

Amazon 
EC2

APIs
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Spark Basics: libraries

Currently the following libs exist and they are evolving 
really-really fast:

- SQL Lib

- Streaming Lib

- Machine Learning Lib (Mllib & ML)

- Graph Lib (GraphX)

We outline all of them but later we will cover some details 
about MLlib and GraphX
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Spark SQL

Spark SQL is a library for querying structures datasets as well as 
distributed datasets.

Spark SQL allows relational queries expressed in SQL, HiveQL, or 
Scala to be executed using Spark. 

Example:

hc = HiveContext(sc)

rows = hc.sql(“select id, name, salary from emp”)

rows.filter(lambda r: r.salary > 2000).collect() 
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Spark MLlib & ML
MLlib is Spark's scalable machine learning library.

Two APIs: the RDD API and the DataFrame API.

Some supported algorithms:
    linear SVM and logistic regression

     classification and regression tree
     k-means clustering
     recommendation via alternating least squares
     singular value decomposition (SVD)
     linear regression with L1- and L2-regularization
     multinomial naive Bayes
     basic statistics
     feature transformations

Runtime for logistic regression
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Spark GraphX

GraphX provides an API for graph processing and graph-parallel algorithms on-top of 
Spark.

The current version supports:
     PageRank
     Connected components
     Label propagation
     SVD++
     Strongly connected components
     Triangle counting
     Core decomposition
     ... Runtime for PageRank
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Spark Streaming

Spark Streaming is a library to ease the development of 
complex streaming applications.

Data can be inserted into Spark from different sources 
like Kafka, Flume, Twitter, ZeroMQ, Kinesis or TCP 
sockets can be processed using complex algorithms 
expressed with high-level functions like map, reduce, 
join and window.
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RESILIENT

DISTRIBUTED

DATASETS
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Resilient Distributed Datasets 
(RDDs)

Data manipulation in Spark is heavily based on RDDs. An RDD is 
an interface composed of:
 a set of partitions
 a list of dependencies
 a function to compute a partition given its parents
 a partitioner (optional)
 a set of preferred locations per partition (optional)

Simply stated: an RDD is a distributed collections of items. In particular: 
an RDD is a read-only (i.e., immutable) collection of items partitioned 
across a set of machines that can be rebuilt if a partition is destroyed.
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Resilient Distributed Datasets 
(RDDs)

The RDD is the most fundamental concept in 
Spark since all work in Spark is expressed as:

- creating RDDs

- transforming existing RDDs

- performing actions on RDDs
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Creating RDDs

Spark provides two ways to create an RDD:

- loading an already existing set of objects

- parallelizing a data collection in the driver
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Creating RDDs

// define the spark context

val sc = new SparkContext(...)

// hdfsRDD is an RDD from an HDFS file

val hdfsRDD = sc.textFile("hdfs://...")

// localRDD is an RDD from a file in the local file system

val localRDD = sc.textFile("localfile.txt")

// define a List of strings

val myList = List("this", "is", "a", "list", "of", "strings")

// define an RDD by parallelizing the List

val listRDD = sc.parallelize(myList) 
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RDD Operations

There are transformations on RDDs that allow us to create 
new RDDs: map, filter, groupBy, reduceByKey, 
partitionBy, sortByKey, join, etc

Also, there are actions applied in the RDDs: reduce, 
collect, take, count, saveAsTextFile, etc

Note: computation takes place only in actions and not on 
transformations! (This is a form of lazy evaluation. More on 
this soon.)
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RDD Operations: transformations

val inputRDD = sc.textFile("myfile.txt")

// lines containing the word “apple” 

val applesRDD = inputRDD.filter(x => x.contains("apple"))

// lines containing the word “orange” 

val orangesRDD = inputRDD.filter(x => x.contains("orange"))

// perform the union 

val unionRDD = applesRDD.union(orangesRDD)
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RDD Operations: transformations

inputRDD

applesRDD

orangesRDD

unionRDD

filter

filter

union

Graphically speaking:

Spark maintains all necessary info to reconstruct an RDD based on the applied transformations.
This is called the “lineage”.
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RDD Operations: actions

An action denotes that finally something must be done

We use the action count() to find the number of lines in 
unionRDD containing apples or oranges (or both) and 
then we print the 5 first lines using the action take()

val numLines = unionRDD.count()

unionRDD.take(5).foreach(println)
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Lazy Evaluation

The benefits of being lazy

1. more optimization alternatives are possible if we see the big picture

2. we can avoid unnecessary computations

Ex: 

Assume that from the unionRDD we need only the first 5 lines. 

If we are eager, we need to compute the union of the two RDDs, materialize 
the result and then select the first 5 lines.

If we are lazy, there is no need to even compute the whole union of the two 
RDDs, since when we find the first 5 lines we may stop. 
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Lazy Evaluation

At any point we can force the execution of 
transformation by applying a simple action such 
as count(). This may be needed for 
debugging and testing.
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Basic RDD Transformations

Assume that our RDD contains:                 1,2,3,1

map()  rdd.map(x => x + 2)    {3,4,5,3}

flatMap() rdd.flatMap(x => List(x-1,x,x+1)){0,1,2,1,2,3,2,3,4,0,1,2}

filter()  rdd.filter(x => x>1)        {2,3}

distinct()rdd.distinct()      {1,2,3}

sample()  rdd.sample(false,0.2) non-predictable
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Two-RDD Transformations

These transformations require two RDDs

union() rdd.union(another)

intersection() rdd.intersection(another)

subtract() rdd.substract(another)

cartesian() rdd.cartesian(another)
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Some Actions

collect()  rdd.collect() {1,2,3,1}

count()  rdd.count()    4

countByValue()  rdd.countByValue() {(1,2),(2,1),(3,1)}

take()  rdd.take(2)  {1,2}

top()  rdd.top(2)  {3,2}

reduce()  rdd.reduce((x,y) => x+y)   7

foreach()  rdd.foreach(func)
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Transformations for Key-Value RDDs

A key-value RDD contains pairs (K,V), where K is considered as 
the key and V is the value. This is a very important type of data 
and therefore, Spark supported specialized transformations for 
key-value RDDs, such as:

– groupByKey
– aggregateByKey
– reduceByKey
– sortByKey
– join
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Transformations for Key-Value RDDs

groupByKey([numPartitions]):
When called on a dataset of (K, V) pairs, returns a dataset of (K, Iterable<V>) 

pairs.

aggregateByKey(zeroValue)(seqOp, combOp, 
[numPartitions]):

When called on a dataset of (K, V) pairs, returns a dataset of (K, U) pairs where 
the values for each key are aggregated using the given combine functions and 
a neutral "zero" value. 

reduceByKey(func, [numPartitions]):
When called on a dataset of (K, V) pairs, returns a dataset of (K, V) pairs where 

the values for each key are aggregated using the given reduce function func, 
which must be of type (V,V) => V.
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Transformations for Key-Value RDDs

sortByKey([ascending],[numPartitions]):
When called on a dataset of (K, V) pairs where K implements 

Ordered, returns a dataset of (K, V) pairs sorted by keys in 
ascending or descending order, as specified in the boolean 
ascending argument.

join(otherDataset, [numPartitions]):
When called on datasets of type (K, V) and (K, W), returns a 

dataset of (K, (V, W)) pairs with all pairs of elements for each 
key. Outer joins are supported through leftOuterJoin, 
rightOuterJoin, and fullOuterJoin.
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DIRECTED

ACYCLIC

GRAPHS
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RDDs and DAGs

A set of RDDs is transformed to a Directed Acyclic Graph (DAG)

Input: RDDs and partitions to compute

Output: output from actions on those partitions

Roles:

>  Build stages of tasks

>  Submit them to lower level scheduler (e.g. YARN, Mesos, Standalone) as 
ready

>  Lower level scheduler will schedule data based on locality

>  Resubmit failed stages if outputs are lost
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Narrow vs Wide Dependencies

Narrow transformations are those in which each partition in the child RDD has 
simple, finite dependencies on partitions in the parent RDD. Dependencies are only 
narrow if they can be determined at design time, irrespective of the values of the 
records in the parent partitions, and if each parent has at most one child partition. 
Specifically, partitions in narrow transformations can either depend on one parent 
(such as in the map operator), or a unique subset of the parent partitions that is 
known at design time (coalesce). Thus narrow transformations can be executed on 
an arbitrary subset of the data without any information about the other partitions. 

In contrast, transformations with wide dependencies cannot be executed on arbitrary 
rows and instead require the data to be partitioned in a particular way, e.g., 
according to the value of their key. In sort, for example, records have to be 
partitioned so that keys in the same range are on the same partition. 
Transformations with wide dependencies include sort , reduceByKey , 
groupByKey , join , and anything that calls the rePartition function.
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Narrow vs Wide Dependencies

Source: High Performance Spark, O’ Reilly, 2017.
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Spark Application Tree

Source: High Performance Spark, O’ Reilly, 2017.
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DAG Scheduling

d1

d2

join

d4

d3

join

d6d5
filter

d7
map

STAGE 1 STAGE 2
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DAG Scheduling

A

join C
filter

D

B

RDD objects DAG scheduler

A.join(B).filter(...).filter(...) split graph into stages of tasks
submit each stage
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Distributed Execution in Spark
Outline of the whole process:

1. The user submits a job with spark-submit.

2. spark-submit launches the driver program and invokes the main() method

specified by the user.

3. The driver program contacts the cluster manager to ask for resources to launch

executors.

4. The cluster manager launches executors on behalf of the driver program.

5. The driver process runs through the user application. Based on the RDD actions

and transformations in the program, the driver sends work to executors in the

form of tasks.

6. Tasks are run on executor processes to compute and save results.

7. If the driver’s main() method exits or it calls SparkContext.stop() , it will 
terminate the executors and release resources from the cluster manager.
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Under the Hood

executor

WORKER 1

task task

executor

 WORKER 3

task task

spark session

driver

cluster
manager

(e.g. YARN)

cache cache

executor

 WORKER 2

task task
cache
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Under the Hood

executor

 WORKER 1

executor

 WORKER 2

executor

 WORKER 3

partition 1 partition 2 partition 3

main() {
...
val rdd = sc.textFile(“hdfs://myfile.txt”)
val num = rdd.filter(x => x > 10).count()
...

}

DRIVER
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main() {
...
val rdd = sc.textFile(“hdfs://myfile.txt”)
val num = rdd.filter(x => x > 10).count()
...

}

Under the Hood

executor

 WORKER 1

executor

 WORKER 2

executor

 WORKER 3

partition 1 partition 2 partition 3

DRIVER

rdd
filter
x=>x>10

rdd
filter
x=>x>10

rdd
filter
x=>x>10

Code is sent 
from the driver 
to workers
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Example Application

Given an RDD of integers, sum the occurrences 
of the same integer for any integer larger than 
100 and then sort in ascending order.

E.g., for the input: 1, 2, 1, 2, 3, 4, 8, 7, 6, 8, 6, 6

The output should be:

(1,2), (2,4), (3,3), (4,4), (6,18), (7,7), (8,16) 
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Example Application

val result = rdd // our initial RDD
.filter(x => x>100) // keep relevant integers
.map(x => (x,x)) // create key-value RDD
.reduceByKey(_+_) // reduce
.filter((x,y) => y > 10) // filter on value
.sortByKey() // sort based on key
result.take(10).foreach(println) // print

CAN YOU IDENTIFY THE STAGES ?
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Example Application

 STAGE 1  STAGE 2  STAGE 3

filter(), map() reduceByKey(), filter() sortByKey()
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PERSISTENCE
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Persistence

In many cases we want to use the same RDD multiple times 
without recomputing it.

Ex:

val result = rdd.map(x => x+1)

println(result.count())

println(result.collect().mkString(","))

We can ask Spark to keep (persist) the data.
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Persistence

val result = rdd.map(x => x+1)

result.persist(StorageLevel.DISK_ONLY)

println(result.count())

println(result.collect().mkString(","))

Persistence levels:

MEMORY_ONLY 

MEMORY_ONLY_SER (objects are serialized)

MEMORY_AND_DISK

MEMORY_AND_DISK_SER (objects are serialized)

DISK_ONLY

If we try to put to many things in RAM Spark starts flushing data to disk using a Least Recently Used policy.
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BROADCAST VARIABLES

AND

ACCUMULATORS
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Broadcast Variables

“Broadcast variables allow the programmer to keep a read-only variable 
cached on each machine rather than shipping a copy of it with 
tasks. They can be used, for example, to give every node a copy of a 
large input dataset in an efficient manner. Spark also attempts to 
distribute broadcast variables using efficient broadcast algorithms to 
reduce communication cost.” (source: Apache Spark website)

  A piece of information is broadcasted to all executors.
  Broadcast variables are set by the driver and are read-only by the 

executors.
  Very useful feature to avoid sending large pieces of data again and 

again.
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Broadcast Variables

val r = scala.util.Random

val vector = Array.fill(1000){r.nextInt(99)}

val rdd = Array.fill(1000000){r.nextInt(99)}.parallelize

val bvector = sc.broadcast(vector)

rdd.map(x => vector.contains(x))

rdd.map(x => bvector.value.contains(x))
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Accumulators

The value of an accumulator can be modified by 
any executor (shared variable).

No special protection is required, Spark takes 
care of this.

Executors can only write to the accumulator. 
They cannot read the value of the accumulator.

The value of an accumulator can be read by the 
driver only.
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Accumulators

Example

// define an accumulator

val counter = sc.longAccumulator("counter")

// sum the contents of a list

sc.parallelize(1 to 9).foreach(x => counter.add(x))
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DATAFRAMES
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Why DataFrames ?

From Apache Spark documentation:

“A DataFrame is a dataset organized into named 
columns. It is conceptually equivalent to a table in 
a relational database or a data frame in R/Python, 
but with richer optimizations under the hood.”

Important: DataFrames are structured!
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Using DataFrames

import org.apache.spark.sql.SparkSession

val spark_session = SparkSession
  .builder()
  .appName("Spark SQL basic example")
  .config("spark.some.config.option", "some-value")
  .getOrCreate()

// For implicit conversions like converting RDDs to DataFrames
import spark.implicits._
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Using DataFrames

// Create a DataFrame drom a json file

val df = spark_session.read.json("examples/src/main/resources/people.json")

// Create a DataFrame from a csv file 

val df =  spark_session.read.option("header", "false").csv("reviews.csv")

// Show the first few lines of the DataFrame

df.show()

// Print the schema of the DataFrame

df.printSchema()
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Using DataFrames

// Selection operation
val resdf = df.select($"name", $"age" + 1)

// SQL query passed as a string

val resdf = spark_session.sql("SELECT name, age FROM 
people WHERE age BETWEEN 13 AND 19")
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Spark Simple Examples

Spark supports
  Java
  R
  Python
  Scala

We are going to use the Scala API in this lecture. We will play with 
Spark Core component and also run examples of MLlib and 
GraphX libraries that are very relevant to Graph Data Mining.

Also, some Python examples will be discussed.
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WordCount
import org.apache.spark.SparkContext._

import org.apache.spark.{SparkConf, SparkContext}

object WordCount {

  def main(args: Array[String]): Unit = {

   

    val sparkConf = new SparkConf().setMaster("local[2]").setAppName("WordCount") 

    val sc = new SparkContext(sparkConf)  // create spark context

    

    val inputFile = "hdfs://myhdfs/leonardo.txt"

    val outputDir = "hdfs://myhdfs/output"

    val txtFile = sc.textFile(inputFile)

    txtFile.flatMap(line => line.split(" ")) // split each line based on spaces

      .map(word => (word,1)) // map each word into a word,1 pair

      .reduceByKey(_+_) // reduce 

      .saveAsTextFile(outputDir) // save the output

      

    sc.stop()

  }

}
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WordCount in Hadoop
import java.io.IOException;

import java.util.*;

        

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.conf.*;

import org.apache.hadoop.io.*;

import org.apache.hadoop.mapreduce.*;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

        

public class WordCount {

        

 public static class Map extends Mapper<LongWritable, Text, Text, 
IntWritable> {

    private final static IntWritable one = new IntWritable(1);

    private Text word = new Text();

        

   public void map(LongWritable key, Text value, Context context) 
throws IOException, InterruptedException {

        String line = value.toString();

        StringTokenizer tokenizer = new StringTokenizer(line);

        while (tokenizer.hasMoreTokens()) {

            word.set(tokenizer.nextToken());

            context.write(word, one);

        }

    }

 } 

        

 public static class Reduce extends Reducer<Text, IntWritable, Text, 
IntWritable> {

    public void reduce(Text key, Iterable<IntWritable> values, Context 
context) 

      throws IOException, InterruptedException {

        int sum = 0;

        for (IntWritable val : values) {

            sum += val.get();

        }

        context.write(key, new IntWritable(sum));

    }

 }

  public static void main(String[] args) throws Exception {
      Configuration conf = new Configuration();
      Job job = new Job(conf, "wordcount");
      job.setOutputKeyClass(Text.class);
      job.setOutputValueClass(IntWritable.class);
      job.setMapperClass(Map.class);
      job.setReducerClass(Reduce.class);
      job.setInputFormatClass(TextInputFormat.class);
      job.setOutputFormatClass(TextOutputFormat.class);

      FileInputFormat.addInputPath(job, new Path(args[0]));
      FileOutputFormat.setOutputPath(job, new Path(args[1]));

      job.waitForCompletion(true);

   }

} 
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PageRank
object PageRank {

 

  def main(args: Array[String]) {

    val iters = 10  // number of iterations for pagerank computation

    val currentDir = System.getProperty("user.dir")  // get the current directory

    val inputFile = "file://" + currentDir + "/webgraph.txt"

    val outputDir = "file://" + currentDir + "/output"

  

    val sparkConf = new SparkConf().setAppName("PageRank")

    val sc = new SparkContext(sparkConf)

    val lines = sc.textFile(inputFile, 1)

  

    val links = lines.map { s => val parts = s.split("\\s+")(parts(0), parts(1))}.distinct().groupByKey().cache()

    var ranks = links.mapValues(v => 1.0)

    for (i <- 1 to iters) {

      println("Iteration: " + i)

      val contribs = links.join(ranks).values.flatMap{ case (urls, rank) => val size = urls.size urls.map(url => 
(url, rank / size)) }

      ranks = contribs.reduceByKey(_ + _).mapValues(0.15 + 0.85 * _)

    }

    val output = ranks.collect()

    output.foreach(tup => println(tup._1 + " has rank: " + tup._2 + "."))

  

    sc.stop()

  }

}
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More on MLlib

MLlib provides some additional data types common in 
Machine Learning

Vector (a math vector, either sparse or dense)

LabeledPoint (useful in classification and regression)

Rating (useful in recommendation algorithms)

Several Models (used in training algorithms)
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SVD with MLlib

import org.apache.spark.mllib.linalg.Matrix

import org.apache.spark.mllib.linalg.distributed.RowMatrix

import 
org.apache.spark.mllib.linalg.SingularValueDecomposition

val mat: RowMatrix = ...

// Compute the top 20 singular values and corresponding singular vectors.

val svd: SingularValueDecomposition[RowMatrix, Matrix] = 
mat.computeSVD(20, computeU = true)

val U: RowMatrix = svd.U // The U factor is a RowMatrix.

val s: Vector = svd.s // The singular values are stored in a local dense vector.

val V: Matrix = svd.V // The V factor is a local dense matrix.
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More on GraphX

The basic concept in GraphX is the property graph

The property graph is a directed multigraph with user 
defined objects attached to each vertex and edge.

GraphX optimizes the representation of vertex and edge 
types when they are plain old data-types (e.g., int) 
reducing in memory footprint by storing them in 
specialized arrays.
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More on GraphX

“While graph-parallel systems are optimized for iterative diffusion algorithms like 
PageRank they are not well suited to more basic tasks like constructing the graph, 
modifying its structure, or expressing computation that spans multiple graphs”

Source: http://ampcamp.berkeley.edu
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More on GraphX

This means that for some tasks Spark may not show 
the best performance in comparison to other 
dedicated graph processing systems.

Ex:

PageRank on Live-Journal network (available @snap)

GraphLab is 60 times faster than Hadoop

GraphLab is 16 times faster than Spark
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More on GraphX

Source: http://spark.apache.org
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More on GraphX

To use GraphX we need to import

import org.apache.spark._

import org.apache.spark.graphx._

import org.apache.spark.rdd.RDD



  
                   74

More on GraphX

val vertexArray = Array(

  (1L, ("Alice", 28)),

  (2L, ("Bob", 27)),

  (3L, ("Charlie", 65)),

  (4L, ("David", 42)),

  (5L, ("Ed", 55)),

  (6L, ("Fran", 50))

  )

val edgeArray = Array(

  Edge(2L, 1L, 7),

  Edge(2L, 4L, 2),

  Edge(3L, 2L, 4),

  Edge(3L, 6L, 3),

  Edge(4L, 1L, 1),

  Edge(5L, 2L, 2),

  Edge(5L, 3L, 8),

  Edge(5L, 6L, 3)

  )

Source: http://ampcamp.berkeley.edu
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More on GraphX

Parallelizing nodes and edges

val vertexRDD: RDD[(Long, (String, Int))] = 
sc.parallelize(vertexArray)

val edgeRDD: RDD[Edge[Int]] = 
sc.parallelize(edgeArray)

Now we have vertexRDD for the nodes and edgeRDD for 
the edges.
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More on GraphX

Last step: define the graph object

val graph: Graph[(String, Int), Int] 
= Graph(vertexRDD, edgeRDD)
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PageRank with GraphX
object PageRank {

  def main(args: Array[String]): Unit = { 

    val conf = new SparkConf().setAppName("PageRank App")

    val sc = new SparkContext(conf)

    val currentDir = System.getProperty("user.dir")  

    val edgeFile = "file://" + currentDir + "/followers.txt"  

    

    val graph = GraphLoader.edgeListFile(sc, edgeFile)  

    

    // run pagerank

    val ranks = graph.pageRank(0.0001).vertices  

    

    println(ranks.collect().mkString("\n")) // print result

  }

}
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Connected Components

4

1

2

3

5

7

6

This graph has two connected components:

                  cc1 = {1, 2, 4}

                  cc2 = {3, 5, 6, 7} Output:
(1,1) (2,1) (4,1) 
(3,3) (5,3) (6,3) (7,3)
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Connected Components
object ConnectedComponents {

  def main(args: Array[String]): Unit = { 

    val conf = new SparkConf().setAppName("ConnectedComponents 
App")

    val sc = new SparkContext(conf)

    

    val currentDir = System.getProperty("user.dir")  

    val edgeFile = "file://" + currentDir + "/graph.txt"

    val graph = GraphLoader.edgeListFile(sc, edgeFile)

    

    // find the connected components

    val cc = graph.connectedComponents().vertices

    

    println(cc.collect().mkString("\n"))  // print the result

  }

}
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Counting Triangles

Triangles are very important in Network Analysis:

- dense subgraph mining (communities, trusses)

- triangular connectivity

- network measurements (e.g. clustering coefficient)

a

b d

ec

Example



  
                   81

Counting Triangles
object TriangleCounting {

  def main(args: Array[String]): Unit = { 

    val conf = new SparkConf().setAppName("TriangleCounting App")

    val sc = new SparkContext(conf)

    

    val currentDir = System.getProperty("user.dir")  

    val edgeFile = "file://" + currentDir + "/enron.txt"

             

    val graph = GraphLoader

                .edgeListFile(sc, edgeFile,true)

                .partitionBy(PartitionStrategy.RandomVertexCut)

    // Find number of triangles for each vertex

    val triCounts = graph.triangleCount().vertices

    

    println(triCounts.collect().mkString("\n"))    

  }

}
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Spark SQL: planets

We have a JSON file (planets.json) containing 
information about the planets of our solar system

{"name":"Mercury","sundist":"57910",  "radius":"2440"}
{"name":"Venus",  "sundist":"108200", "radius":"6052"}
{"name":"Earth",  "sundist":"149600", "radius":"6378"}
{"name":"Mars",   "sundist":"227940", "radius":"3397"}
{"name":"Jupiter","sundist":"778330", "radius":"71492"}
{"name":"Saturn", "sundist":"1429400","radius":"60268"}
{"name":"Uranus", "sundist":"2870990","radius":"25559"}
{"name":"Neptune","sundist":"4504300","radius":"24766"}
{"name":"Pluto",  "sundist":"5913520","radius":"1150"}
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Spark SQL: planets

The JSON schema looks like this:

root

 |-- name: string (nullable = true)

 |-- radius: string (nullable = true)

 |-- sundist: string (nullable = 
true)
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Spark SQL: planets

We need to do the following:

1. extract the schema from planets.json

2. load the data

3. execute a SQL query
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Spark SQL: planets
object Planets {

  def main(args: Array[String]) {

    // Create spark configuration and spark context

    val conf = new SparkConf().setAppName("Planets App")

    val sc = new SparkContext(conf)

    val sqlContext = new org.apache.spark.sql.SQLContext(sc)

  

    val currentDir = System.getProperty("user.dir")  // get the current directory

    val inputFile = "file://" + currentDir + "/planets.json"

    

    val planets = sqlContext.jsonFile(inputFile)

    planets.printSchema()

    planets.registerTempTable("planets")

    val smallPlanets = sqlContext.sql("SELECT name,sundist,radius FROM planets WHERE radius < 10000")

    smallPlanets.foreach(println)

    sc.stop()

    

  }

}
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Spark SQL: sales
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Spark SQL: sales

val basicDF =  ss.read.option("header", "true").csv(“sales.csv”)

basicDF.printSchema()

basicDF.show()
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Spark SQL: sales
// Define some helpful User-Defined Functions (UDFs)

 val udf_toDouble = udf[Double, String]( _.toDouble)

 val udf_toInt = udf[Int, String]( _.toInt)

 // Convert columns to the appropriate data type.

 val modifiedDF = basicDF

      .withColumn("Transaction_Date", to_timestamp($"Transaction_Date", "mm/dd/yy HH:mm"))

      .withColumn("Account_Created", to_timestamp($"Account_Created", "mm/dd/yy"))

      .withColumn("Last_Login", to_timestamp($"Last_Login", "mm/dd/yy"))

      .withColumn("Latitude", udf_toDouble($"Latitude"))

      .withColumn("Longitude", udf_toDouble($"Longitude"))

      .withColumn("City", rtrim($"City"))

modifiedDF.printSchema()

modifiedDF.show()
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Spark SQL: sales

// Show only LAT-LON of sales.

modifiedDF.select($"Latitude",  $"Longitude").show()

// Show number of sales per country and also average price of sold products per 
country (use group by).

 
modifiedDF.groupBy($"Country").agg(count("Transaction_Date"),avg("Price")).s
how()

    // Show number of sales per Country only for VISA payments (use filter).

    modifiedDF.filter($"Payment_Type" === 
"Visa").groupBy($"Country").agg(count("Transaction_Date")).show()
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Spark SQL: sales

// First, register the DF as a temporary view with the name "sales".

 modifiedDF.createOrReplaceTempView("sales")

// Now, you can use the sqlContext to run SQL queries, since "sales" is like a dtabase table.

// Get all sales for France.

modifiedDF.sqlContext.sql("SELECT * FROM sales WHERE Country='France'").show()

// Get all pairs of sales using Transaction_Date as the key, to detect pairs of sales that correspond to the

// same price. This is equivalent to a self-join on column "Price".

modifiedDF

      .sqlContext

      .sql("SELECT r.Transaction_Date, s.Transaction_Date FROM sales as r, sales as s WHERE r.Price = 
s.Price")

      .show()

Another way to write an SQL query
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WordCount in Python
from __future__ import print_function
import sys
from operator import add
from pyspark import SparkContext

if __name__ == "__main__":
    if len(sys.argv) != 2:
        print("Usage: wordcount <file>", file=sys.stderr)
        exit(-1)
    sc = SparkContext(appName="PythonWordCount")
    lines = sc.textFile(sys.argv[1], 10)
    counts = lines.flatMap(lambda x: x.split(' ')) \
                  .map(lambda x: (x, 1)) \
                  .reduceByKey(add)
    output = counts.collect()
    for (word, count) in output:
        print("%s: %i" % (word, count))

    sc.stop()
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from __future__ import print_function

import sys

import numpy as np

from pyspark import SparkContext

from pyspark.mllib.clustering import KMeans

def parseVector(line):

    return np.array([float(x) for x in line.split(' ')])

if __name__ == "__main__":

    if len(sys.argv) != 3:

        print("Usage: kmeans <file> <k>", file=sys.stderr)

        exit(-1)

    sc = SparkContext(appName="KMeans")

    lines = sc.textFile(sys.argv[1], 10)

    data = lines.map(parseVector)

    k = int(sys.argv[2])

    model = KMeans.train(data, k)

    print("Final centers: " + str(model.clusterCenters))

    print("Total Cost: " + str(model.computeCost(data)))

    sc.stop()

kMeans in Python
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Some Spark Users
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Resources

The best way to begin learning Spark is to study the 
material at Spark's official website 

                  https://spark.apache.org

From this website you have access to Spark 
Summits and other events which contain useful 
video lectures for all Spark components.



  
                   96

Spark Books

Books to learn Spark
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Useful MOOCs

Coursera (www.coursera.org):

Introduction to Big Data

Big Data Analysis with Scala and Spark

Data Manipulation at Scale, Systems and Algorithms 

edX (www.edx.org): 

Introduction to Apache Spark

Distributed Machine Learning with Apache Spark

Big Data Analysis with Apache Spark

https://spark.apache.org/
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Dataset Download

Where to find more graph data ?

Take a look at
http://snap.stanford.edu
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Thank you

Questions ?
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