An Introduction to

I LONN-

! i Ca la OBJECT - ORIENTED

Apostolos N. Papadopoulos
(papadopo@csd.auth.gr)
Data and Web Science Lab
Department of Informatics
Aristotle University of Thessaloniki
Greece

The Very Basics

“If | were to pick a language to use today other
than Java, it would be Scala.”

—James Gosling
(father of Java)

The Very Basics

Scala = SCAlable LAnguage

l.e., designed to grow with the demands of its users

Development started in 2001 by Martin Odersky
and his team at EPFL

First release in January 2004

Current version 2.13.x

The Very Basics

Scala Is a general-purpose programming language
that runs on Java Virtual Machine (JVM) and .NET

Expresses common programming patterns in a
concise, elegant, and type-safe way.

Scala supports both the object-oriented and the
functional programming model.

The Very Basics

Scala is object-oriented.:

Encapsulation

Inheritance

Polymorphism

All predefined types are objects

All user-defined types are objects

Objects communicate by message exchange

The Very Basics

Scala Is functional:

— Functions are first-class values

— Can define a function in another function
— Can map input values to output values
— Can do lazy evaluation

— Supports pattern matching

— Higher-order functions

Scala is not a PURE functional language however.

The Very Basics

Scala has been inspired by other programming languages:

* Scala's object model was pioneered by Smalltalk and taken up subsequently by
Ruby

Scala adopts a large part of the syntax of Java and C#

Its idea of universal nesting (almost every construct in Scala can be nested inside
any other construct) is also present in Algol, Simula, and, more recently in Beta

Its uniform access principle for method invocation and field selection comes from
Eiffel

Its approach to functional programming is quite similar in spirit to the ML family of
languages, which has SML, OCaml, and F# as prominent members

It adopts the Actor model for concurrent computation from Erlang

The Very Basics

Simula
Lisp lObjeCtS Prolog
functional cvntax Smalltal k
programming Y pattern
matching
ML
\ ‘ Erlang
Haskell
Java

Actors

Scala

The Very Basics

Scala is a statically typed language like Java.

In static typing, a variable is bound to a particular type for its
lifetime. Its type can’t be changed and it can only reference
type-compatible instances.

That is, If a variable refers to a value of type A, you can’t
assign a value of a different type B to it, unless B is a
subtype of A, for some reasonable definition of “subtype.”

This is different than in dynamically typed languages such as
Ruby, Python, Groovy, JavaScript, Smalltalk and others.

Scala vs Java

Java code:

class Book {
private String author;
private String title;
private int year;

public Book(String author, String title, int year) {

this.author = author;
this.title = title;
this.year = year;

}

public void setAuthor(String author) { this.author = author; }
public void String getAuthor() { return this.author; }

public void setTitle(String title) { this.title = title; }
public void String getTitle() { return this.title; }

public void setYear(int year) { this.age = year; }

public void int getYear() { return this.year; }

}

Scala code:

class Book (var author: String, var title: String, var year: Int)

10

Scala vs Java

Lets check it out:

class Book (var author: String, var title: String, var year: Int)

Assume the previous class declaration is in the file
Book.scala

We run the Scala compiler using
scalac Book.scala
Then, we use the class disassembler
$JAVA_HOME/bin/javap -private Book.class

11

Scala vs Java

public class Book {

private java.lang.String author;

private java.lang.String int title;

private int year;

public
public
public
public
public
public
public

java.lang.String author();

void author_$eqg(java.lang.String);
java.lang.String title(),

void title_$eq(java.lang.String);
int year();

void year_$eq(int);
Book(java.lang.String, 1int);

12

The First Scala Program

A very simple program in Scala:

/* Our first Scala program */
object Helloworld {
/* The main function */

def main(args: Array[String]) {
println("Hello, world!")
¥

To define a singleton we use the keyword object

13

Scala Data Types

Byte 8 bit signed value, Range from -128 to 127
Short 16 bit signed value. Range -32768 to 32767
Int 32 bit signed value. Range -2147483648 to 2147483647

Long 64 bit signed value. -9223372036854775808 to 9223372036854775807
Float 32 bit IEEE 754 single-precision float

Double 64 bit IEEE 754 double-precision float

Char 16 bit unsigned Unicode character. Range from U+0000 to U+FFFF

String asequence of Chars
14

Simple Functions

// count from 1 to 10

def countTo(n: Int) {
for (1 <- 1 to 10) {
println(1i)

}

// return true if a number is even, false otherwise
def isEven(n: Int) = {

val m=n% 2

m ==

15

Immutable vs Mutable

An immutable element cannot change its value. Immutable elements help
In creating more robust parallel programs because concurrency is much
more easier for iImmutable values.

A mutable element can change its value. Scala supports both immutable
and mutable elements and it is up to the program to use these features.

e.g.,
val p1i = 3.14 // piisimmutable, is defined as a val (value)
var sal = 10,000 // sal is mutable, it is defined as a var (variable)

16

Imperative vs Functional

Imperative programming is the way we program in C,
C++, Java and similar languages. It is heavily
based on mutable elements (i.e., variables) and
we need to specify every single step of an
algorithm.

Scala supports imperative programming, but the real
power of the language Is the functional perspective
which is based on immutable elements.

17

Interactive Scala

The REPL (Read — Evaluate — Print Loop)

It Is a Scala Shell

Useful for fast testing, without the need to write
complete programs. Runs each scala command
Immediately.

18

Interactive Scala

A screenshot of the Scala REPL

apostol@dell:~$ scala

Welcome to Scala version 2.10.4 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0 40).
Type in expressions to have them evaluated.

Type :help for more information.

scala> val msg = "Hello World"
msg: String = Hello World

scala> msg.split(" ").foreach(println)
Hello
World

scala> ||

19

First Steps in Scala

Define a list of pets:
val pets = List("dog", '"cat", "parrot")

Print the contents of the list:
pets.foreach(println)

Print the length of each string:
pets.foreach(pet => println(pet.length))

20

First Steps in Scala

Split a sentence to words
val msg = "Hello World"

msg.split(" ").foreach(println)

Result:
Hello
World

21

First Steps in Scala

val msg = "Polytechnique"
msg.drop(3).take(2).capitalize

Result:
Yt

22

First Steps in Scala

Iterate over string characters
val msg = "hello polytechnique™

msg.map(c => c.toUpper)

Result:
HELLO POLYTECHNIQUE

23

First Steps in Scala

Filtering strings

val msg = "This 1s a text"

msg.filter(_ !'= '1').map(c => c.toUpper)
msg.filter(_ !'= '1').map(_.toUpper) }-emmmbm
Result:

THS S A TEXT

24

First Steps in Scala

Random numbers
val r = scala.util.Random

r.nextInt
r.nextInt(100)
r.nextFloat
r.nextDouble

// An array of random numbers
val vector = Array.fi1l11(10){r.nextInt(9)}

25

First Steps in Scala

List examples

/I List of Strings
val fruit: List[String] = List("apples", "oranges", "pears")

Il List of Integers
val nums: List[Int] = List(1, 2, 3, 4)

/[An empty List
val empty: List[Nothing] = List()

Il A two-dimensional List

val dim: List[List[Int]] = List(List(1, 0, 0),
List(0, 1, 0),
List(0, 0, 1)

26

First Steps in Scala

Set examples

var users = Set("Mary", "John", "Fred",

users('"Mary") // returns true

users("Ted") // returns false

users += "Jack" //inserts “Jack” into the users

users -= "Fred" //removes “Fred” from users

What if we had declared

val users = Set("Mary", "John", "Fred",

"Julia")

"Julia")

27

First Steps In Scala

Duplicate elimination

val nums: List[Int] = List(1, 2, 1, 3, 4, 3)

nums.distinct

Result

List (1, 2, 3, 4)

First Steps in Scala

Folding

A mechanism to traverse the contents of
container applying some function as we go

val myList = List(1,2,3,4,5)
myList.foldLeft(0)((a,b) => a+b)

Result

27?7

29

First Steps in Scala

Folding

A mechanism to traverse the contents of
container applying some function as we go

val myList = List(1,2,3,4,5)
myList.foldLeft(0)((a,b) => a+b)

Result

List (1, 2, 3, 4)

30

First Steps in Scala

Exercise: multiply all elements of a List using
folding

val myList = List(1,2,3,4,5)

31

First Steps in Scala

Exercise: multiply all elements of a List using
folding

val myList = List(1,2,3,4,5)
myList.foldLeft(1)((a,b) => a*bh)

32

Counting Lines of a Flle

object LineCount {
def main(args: Array[String]) {

val inputFile = "leonardo.txt"

val src = scala.io.Source.fromFile(inputFile)

val counter = src.getLines().map(line => 1).sum

println("Number of lines in file: "+counter)

33

WordCount v1: idea

Use a hashmap, which stores (word,counter)
pairs.

The hashmap is updated in every word
occurrence. Either a new word Is inserted with
counter=1, or the counter Is iIncremented.

34

WordCount v1: code

import scala.io.Source
object WordCount {
def main(args: Array[String]) {

val lines = Source.fromFile("leonardo.txt").getLines.toArray

val counts = new collection.mutable.HashMap[String, Int].withDefaultValue(0)

lines.flatMap(line => line.split(" ")).foreach(word => counts(word) += 1)

println(counts)

35

WordCount v2: iIdea

Group words on linked lists.

Each linked list is responsible to store a single
word. Using groupBy all same words are
grouped together in the same linked list.

The number of occurrences of a word equals the
length of the linked list.

36

WordCount v2

import scala.io.Source
object WordCount {
def main(args: Array[String]) {

val counts = Source.fromFile("leonardo.txt").
getLines().
flatMap(_.split("\\W+")).
toList.
groupBy((word: String) => word).
mapValues(_.length)

println(counts)

37

WordCount v3: idea

Use flatMap and foldLetft.

This is more efficient, since we avoid the costly
groupByKey operation.

38

WordCount v3: code

import scala.io.Source
object WordCount {

def main(args: Array[String]) {

val counts = Source.fromFile("leonardo.txt").
getLines().
flatMap(_.split("\\wW+")).
foldLeft(Map.empty[String, Int]){

(count, word) => count + (word -> (count.getOrElse(word, 0) + 1))

}

println(counts)

39

Quicksort v1

var Xxs: Array[Double]
def swap(i: Int, j: Int) {
val t = xs(1); xs(1) = xs(j); xs(j) =t

def sorti(l: Int, r: Int) {

val pivot = xs((1 + r) / 2)

var 1 = 1

var j = r

while (i <= j) {
while (xs(i) < pivot) i +=1
while (xs(j) > pivot) j -=1
if (1 <= 3j) {

swap(i, j); 1 +=1;, j -=1

b
if (1 < j) sorti(l, j)
if (j < r) sorti(i, r)
b
sortl(®, xs.length - 1)

40

Quicksort v2

object QuickSort {
def quick(xs: Array[Int]): Array[Int] = {
if (xs.length <= 1) xs

else {
val pivot = xs(xs.length / 2)

Array.concat(quick(xs filter (_ < pivot)),

xs filter (_ == pivot), quick(xs filter (_ > pivot)))

41

Array Example

object ArrayDemo {
def mySquare(arr: Array[Int]): Array[Int] = {
arr.map(elem => elem * elem)
}
def myCube(arr: Array[Int]): Array[Int] = {
arr.map(elem => elem*elem*elem)

def main(args: Array[String]) {
// fill the array with random numbers
val vector = Array.fill1(10){scala.util.Random.nextInt(9)}

println(vector.mkString(","))
println(mySquare(vector).mkString(","))
println(myCube(vector).mkString(","))

42

Traits

- Similar to interfaces in Java

- They may have implementations of methods
- But cannot contain state

- Can be multiply inherited from

43

Tralt Example

trait Similarity {
def isSimilar(x: Any): Boolean
def isNotSimilar(x: Any): Boolean = !isSimilar(x)

class Point(xc: Int, yc: Int) extends Similarity {
var x: Int = xc
var y: Int = yc
def isSimilar(obj: Any) =
obj.isInstanceOf[Point] &&
obj.asInstanceOf[Point].x ==

object TraitsTest extends Application {
val pl = new Point(2, 3)
val p2 = new Point(2, 4)
val p3 = new Point(3, 3)
println(pl.isNotSimilar(p2))
println(pl.isNotSimilar(p3))
println(pl.isNotSimilar(2))

44

Actors

A strong aspect of Scala is its abllity to develop
concurrent programs.

The language supports the Actor model (adopted
from Erlang)

What is an actor?

Actors are normal objects that are created by
iInstantiating subclasses of the Actor class.

45

Actors

Actors may collaborate by message exchange.

If actor Al sends a message to actor A2, the
message Is stored in the mailbox of A2 and it will
be processed in turn.

When A2 finishes processing of the current
message, handles the next one from the mailbox.

46

Actor Example

import akka.actor.Actor
import akka.actor.ActorSystem
import akka.actor.Props

class HelloActor extends Actor {
def receive = {
case "hello" => println("hello back at you")

case _ => println("huh?™)

object Main extends App {
val system = ActorSystem("HelloSystem")

val helloActor = system.actorOf(Props[HelloActor],

helloActor !
helloActor !

"hello"
"buenos dias"

}

Reference: Scala Cookbook

name = "helloactor")

47

Resources

Recommended links for Scala programming

Official Scala Website

Scala School

48

http://www.scala-lang.org/
https://twitter.github.io/scala_school

A ool et sheg- by-step gl e

Programming in

Scala

Second Edition

Mt Oy

L= S
Artmma Bill Vemniars

INACTI

Resources

CREILLY

Programming fcamnd Prodwmmming

Scala Wfocala) || EE.

on the Java Virtual Machine

SCALABILITY = FURCTIONAL
PROGRAMMING = OBIECTS

Venkat Subramaniam

Edliteed by Demicd M Steinborg

Jaeon Swartr

Revipes forr Olsjoct-Oriestoed and Funetiomal Programming

Beginning

= . Cookbook

O'REILLY" Alein Alexander

Tools to Learn Scala

Use an applet to test some Scala code in your browser (visit
http://www.simplyscala.com)

Download a scala version, install it and use the REPL for testing.

Try scala-notebook, a web-based interface to test scala code (it has more features than
the applet).

Download the tool Typesafe Activator (http://www.typesafe.com/get-started) and use
Scala thourgh your browser.

Use Scala from an IDE, like Netbeans, Eclipse or IntelliJd

You can use Linux, Windows or Mac as long as you have a recent (at least 1.6) JDK installed in your system.

50

More Scala

) pl.Cl.y Download Documentation Get Involved

The High Velocity
Web Framework
For Java and Scala

Video introduction to Play Framework

GET THE LATEST PACKAGE
Download 2.3.8

or browse all versions @

GET STARTED WITH

Tutorials

or read full documentation

Play Framework makes it easy to build
web applications with Java & Scala.

https://www.playframework.com/ o1

Even More Scala

3 Scala.js Archive Categories Pages Tags
Scala.js the Scala to JavaScript compiler

Scala.js compiles Scala code to JavaScript, allowing you to write your
web application entirely in Scala! Take a look at the project gallery to
see what kind of things you can build with Scala.js.

Get started

Start the Tutorial Try it in the Browser

The easiest way to get started is to follow our tutorial. You can also fork
the bootstrapping skeleton and follow the instructions in its readme or
try it out in the browser. There's also an e-book Hands-on Scala.js

which contains a lot of introductory material to help you get started. Scala.js logo

We also have a standalone distribution that doesn't require SBT.

Nofe that Scala.js is not part of the Typesafe Reactive plafform. Thus, afthough we consider Scala.js
production-ready, Typesafe does not provide any commercial support for it.

Noteworthy features

® Support all of Scala (including macros!), modulo a few semantic differences
® \ery good interoperability with JavaScript code. For example, use jQuery and HTML5 from your Scala.js

code, either in a typed or untyped way. Or create Scala.js objects and call their methods from JavaScript.

® |niegrated with sbt (including support for dependency management and incremental compilation)

® Can be used with your favorite IDE for Scala

® Generates Source Maps for a smooth debugging experience (step through your Scala code from within
your browser supporting source maps)

® |ntegrates Google Closure Compiler for producing minimal code for production. Compiled blobs range
from 170-400kb

® Produces (very) efficient JavaScript code (benchmarks)

http://www.scala-js.org/

52

Questions ?

Thank You

53

8 Queens

54

8 Queens

/I Example: List(4, 2, 7, 3, 6, 8, 5, 1) means that the queen in the first column is in row 4,
/I the queen in the second column is in row 2, etc

object Queens {
def eightQueens = {

def validDiagonals(gs: List[Int], upper: Int, lower: Int): Boolean = gs match {
case Nil => true
case q :: tail => q !'= upper && q != lower && validDiagonals(tail, upper + 1, lower - 1)

}

def valid(gs: List[Int]): Boolean = gs match {
case Nil => true
case @ :: tail => validDiagonals(tail, g + 1, g - 1)

}

def eightQueensR(curQueens: List[Int], remainingCols: Set[Int]): List[List[Int]] =
if ('valid(curQueens)) Nil
else if (remainingCols.isEmpty) List(curQueens)

else remainingCols.toList.flatMap(c => eightQueensR(c :: curQueens, remainingCols - c))

eightQueensR(Nil, Set() ++ (1 to 8))

}
}

95

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

