Big Data Analytics and Cluster Computing
with Apache Hadoop

Apostolos N. Papadopoulos
Associate Professor

Department of Informatics
Aristotle University of Thessaloniki, Greece
papadopo@csd.auth.gr

Outline

- Big Data everywhere

- Why one machine is not enough ?

- Parallel architectures

- Important issues in cluster computing
- Hadoop MapReduce

- Architecture of HDFS

- Architecture of YARN cluster manager
- MapReduce limitations

Big Data Everywhere

DATA NEVER SLEEPS £ szsms

morme abstrac concept used to Inspine and mystity the T cromed: it s
ety

How Much Data Is Gene;‘ét;e“cl Ev“eAr_)rMMlnute?

N N LD SN =

o T EFre

These are just some of the More cammon ways that Internet users add to the big The global Internet population
data pool. in truth, depending on the niche of business you're in, there arc wirtuobbye grew &.5% percent fromm 2010
countless other sources of relevant data to pay attention to. Consider the following e 2011 and now represents

These users are real, and they are out there leawving data trails everywhere they go. The tearm at Domo can
help yvou Mmake sense of this seemingly insurmountable heap of data, with solutiomns that help executives
and managers brinmng all of the i

ical information together in one intuitive interface, and then use that
insight to transform the vway they run their business. To learn Mmore, visit vwwew.domo .corm
SOURCES: HTT P/ NEWS.

INVESTORS . COMS, ROYAL . PINGDOM.COM, BLOG.GROWO.COM,
BLOG. HUBSPOT.COM, SIMPLYZES TY.COM, PCWORLD.COM, BIZ TEC HMASAZ IME.COM, DIGEY. COM

Big Data Everywhere

of the web.
st by SO il b

Chinese,

¥ P e oste oo

EIEI:a'h-}'t-és o
of data.

& million

s b P
P syt Wt

dumdt pm 8 whecy of activity or Teetier paes reskients,
temiy memibery. s (ourmeini sdvencs satTeng o detsde
g shmd e Gevaviatng amd tnunarni i lapan.
high-frequency traders.

L L T m—
1 ik e md 5 act quackly
o thesr Brcings.

These i
mwﬂﬂﬂ. :

5 milliseconds

With new fiber—optic cable.
Tom rourd o e befween Rew York
el | ol wrill e 9B dlnen ords

Tham & il tarvir i wor
Faary redme of (ke 1 Then Damlirng
iy el i S Bol

How they save § milliseconds
Tha deps of tha Aderac Doean varss.

Tha mgms cubla will bs on ereas of T ocean
Poor thal sy up b 1000 Sl shalomsr
Trar P pureeed lesbed catsie By Lakiny

& S AL, T e T
i e 1 e LT 0
taki b TR 10 b
wong i @ aorena

The 3 V's of Big Data

The 5 V's of Big Data

Value

Volume Veloci
» Terabytes « Batch
* Records/Arch « Real/near-time
* Transactions * Processes
» Tables, Files + Streams
Varie G
S A Statistical
« Structured st . L - . istica
* Unstructured : Blg Data J/ + Events
« Multi-factor i i * Correlations
* Probabilistic * Hypothetical
* Trustworthiness
« Authenticity
« Origin, Reputation
« Availability
» Accountability

Veracity |

The 7 V's of Big Data

V'S
FOR BIG DATA
SUCCESS
Volume Variety Velocity ‘

Vision

Big Data Is not a Hype

Olessthan2years O 2to5 years

Peak of
Technology T h of Plateau of
Trigger Inflated Slope of Enlightenment Productivity
time >
Plateau will be reached in: bsolet

®5to10years A morethan 10 years @ before plateau

expectations

| | Asof July2013
Innovation SRR Trough of . Plateau of
Trigger Em“"‘" o Disillusionment Slope of Enlightenment Productivity
time »

Plateau will be reached in:

obsolete
Olessthan 2years ©2to5years @ 5to 10 years A morethan 10 years @ before plateau

2014

Olessthan 2years © 2105 years

i As of July 2014
Innovation Peak of Trough of P— Plateau of
Trigger . Inflated fhusi ightenment productivity
time »
Plateau will be reached in:

obsolete
@5t 10 years A morethan 10years @ before plateau

A.umzms
Plateau of

Slope of Enlightenment

time e

Plateau will be reached in: t &
Olessthan2years ©21o5years @ 5to 10years A more than 10 years @ before plateau

Motivation

We need more CPUs because:

we can run programs faster

We need more disks because:

modern applications require huge amounts of data
with many disks we can perform I/O in parallel

Assume that we are able to build a single disk with 500 TB capacity. This is
enough to store more than 20 billion webpages (assuming an average
Size per page of 20KB).

However,_just to scan these 500 TB we need more than 4 months if the
disk can bring 40 MB/sec. Imagine the time required to process the data !

In the Near Future

“IBM Research and Dutch astronomy agency
Astron work on new technology to handle

one exabyte of raw data per day

that will be gathered by the world largest radio
telescope, the Square Kilometer Array, when
activated in 2024.”

10

Some Challenges

Scalability

Load balancing

Fault Tolerance

Efficiency

Data Stream processing
Support for complex objects

Accuracy/Speed tradeoffs (with performance
guarantees)

11

Parallel Architectures

Shared Memory: processors share a common main
memory and also share secondary storage (e.g.,
disks)

Shared Disk: processors share only secondary
storage, whereas each processor has its own
private memory

Shared Nothing: processors do not share anything,
each one has private secondary storage and
memory

12

Parallel Architectures

='"-:-

shared memory shared disk shared nothing

13

Scalability

Scale-Up: put more resources
Into the system to make it

bigger and more powerful | eat a lot,
| am very expensive,

but | am robust

Scale-Out is more powerful than Scale-Up, and also less expensive

14

Scalability: measures

Among the three parallel architectures, shared-nothing is the one
that scales best. This is the main reason for being adopted for
building massively parallel systems (thousands of processors)

- Speedup: monitor performance by increasing the number of
Processors

- Sizeup: monitor performance by increasing only the dataset
size

- Scaleup: monitor performance by increase both the number of
processors and the dataset size

15

The Speedup Curve

16

Real Curves are Non-Linear
Why ?

Start-up costs: cost for starting an operation in a processor

Interference: cost for communication among processors and
resource congestion

Skew: either in data or tasks — the slowest processor becomes the
bottleneck

Result formation: partial results from each processor must be
combined to provide the final result.

Failures: some tasks may fail and they need to be restarted.

17

Cluster Configuration Example

Aggregation switch

<+—» 8 gigabit
<—» 1 gigabit

Rack switch
Node | Node | Node Node Node
-- _-_ -P _-- _- -__
DR ERERE
T — T — T — e — T — T —

- 40 nodes/rack, 1000-4000 nodes in cluster
- 1 Gbps bandwidth within rack, 8 Gbps out of rack
- 8 X 2GHz cores, 8 GB RAM, 4 disks (=4 TB?)

Source: Matei Zaharia

18

Fault Tolerance

Failures are very common in massively parallel systems

Let P the probability that a disk will fail in the next month. If we have D
disks in total, the probability that at least one disk will fail is given by:

Prob atleastonediskfailure| =1—(1— P)D

e.g., D =10000, P = 0.0001

Prob {at least one disk failure} = 0.63

19

Fault Tolerance

Failures may happen because of:

Hardware not working properly

Disk failure
Memory failure (8% of DIMMs have problems)
Inadequate cooling (CPU overheating)

Resource unavailability

Due to overload

We must provide fault tolerance in the cluster!

20

Fault Tolerance

Simplest protocol: if there Is a fallure, restart the
Jjob.

Assume a job that requires 1 week of processing.
If there Is a failure once per week, the job will
never finish!

21

Fault Tolerance

A better protocol:

Replicate the data and also split the job In parts
and replicate them as well. As an alternative,
submit a smaller job (task) and if it fails then start
another one.

A large Job must be decomposed to simpler ones.

22

Meet Hadoop

A very successful platform to run jobs in massively parallel systems
(thousands of processors and disks).

It contains many different components. We will focus on:

— the Hadoop MapReduce layer
— the YARN resource manager
— the Hadoop Distributed File System (HDFS)

Hadoop is the open-source alternative of MapReduce and Google File System (GFS)
invented by Google. It has been used in Google's data centers mainly for:

— constructing and maintaining the Inverted Index and
— executing the PageRank algorithm.

23

Meet Hadoop

Doug Cutting, explains how the name came about

From Wikipedia: Douglass
Read "Doug" Cutting is an
advocate and creator of open-
source search technology. He
originated Lucene and, with
Mike Cafarella, Nutch, both
open-source search
technology projects which are
now managed through the
Apache Software Foundation.
He is also the creator of
Hadoop (Yahoo!, Cloudera).

“The name my kid gave a stuffed yellow elephant. Short, relatively
easy to spell and pronounce, meaningless, and not used elsewhere:
those are my naming criteria. Kids are good at generating such. Googol
is a kid's term”

24

The Hadoop Ecosystem

Ambari

(Provisioning, Management, Monitoring)

)

cC

= o
= S D
e & o
O
TR O — W
0 .S N = 9
X T o3 25
S S = 3 °

(@)

S =

=

Apache

"“!'0%. A b °
<oy AMDPAri

The Hadoop Ecosystem
MRv1 VS MRv2

MapReduce
Distributed Processing

MapReduce
Distributed Processing

YARN
Resource Scheduling and Negotiation

HDFS
Distributed Storage

HDFS
Distributed Storage

Figure 3.1 The Hadoop 1.0 ecosystem. MapReduce and HDFS are the
core components, while other components are built around the core. Figure 3.2 YARN adds a more general interface to run non-MapReduce
jobs within the Hadoop framework

From “Apache Hadoop™ YARN Moving beyond MapReduce and Batch Processing with
Apache Hadoop™ 2”7, by Arun C. Murthy, Vinod Kumar Vavilapalli, Doug Eadline,
Joseph Niemiec,Jeff Markham

26

Hadoop Cluster Architecture

NodeManager NodeManager NodeManager NodeManager
DataNode DataNode DataNode DataNode

HDFS Architecture

HDEFS stands for Hadoop Distributed File System

It is a File System that lives across the nodes of a cluster. It stores
files, each file has a filename and is located in a specific directory.

It supports most of the operations supported by an ordinary File
System.

Every HDFS cluster is comprised of:

- one or two NameNodes and
- many DataNodes

28

HDFS Architecture

NameNode (one or two per cluster)

- Represents a single filesystem namespace rooted at /
- Is the master service of HDFS

- Determines and maintains how the chunks of data are distributed across the
DataNodes

- Actual data never resides here, only metadata (e.g., maps of where blocks are
distributed).

DataNode (as many as you want per cluster)

- Stores the chunks of data, and is responsible for replicating the chunks across
other DataNodes

- Default number of replicas on most clusters is 3 (but it can be changed on a
per-file basis)

- Default block size on most clusters is 128MB.

29

HDFS Architecture: NameNode

DataNode DataNode DataNode DataNode
30

HDFS Architecture: NameNode

METADATA
- permissions
- ownership
- quotas
- block size
- replication level
- access time
- last update time

DataNode DataNode DataNode DataNode
31

HDFS Architecture: NameNode

METADATA NAMESPACE
- permissions - file hierarchy
- ownership - directory names

- quotas - file names
- block size

- replication level

- access time

- last update time

DataNode DataNode DataNode DataNode
32

HDFS Architecture: NameNode

METADATA NAMESPACE BLOCK MAPPING
- permissions - file hierarchy For every file name
- ownership - directory names it keeps track of the

- quotas - file names block identifiers (IDs)
- block size

- replication level

- access time

- last update time

DataNode DataNode DataNode DataNode
33

HDFS Architecture: NameNode

METADATA NAMESPACE BLOCK MAPPING

- permissions - file hierarchy For every file name

- ownership - directory names it keeps track of the

- quotas - file names block identifiers (IDs)
- block size

- replication level

- access time

- last update time

DataNode DataNode DataNode DataNode

Important: DataNodes initiate connections to the NameNode (not vice versa)

HDFS Architecture: replication

Replication in HDFS

This file is split into
4 chunks (splits)

//\\

The the file is split in chunks. Each is replicated three times in this example.
One of the chunk is located at a different rack for increased fault tolerance.

35

HDFS Architecture: replication

/ \ The NameNode does not
receive a heartbeat from
DataNode?2. It assume that
DataNode?2 is down and
NameNode therefore it will initiate a
replication process for block A
to guarantee a replication
factor of 3.

DataNodel DataNode2

— 3 — S

HDFS Architecture: writing a file

1. Client sends request to create
a new file to HDFS

Big Data Filej

37

HDFS Architecture: writing a file

1. Client sends request to create
a new file to HDFS

2. Lease to file path

Big Data Filej

38

HDFS Architecture: writing a file

Big Data Filej

1. Client sends request to create
a new file to HDFS

2. Lease to file path

3. Request for block IDs

v

39

HDFS Architecture: writing a file

Big Data Filej

1. Client sends request to create
a new file to HDFS

2. Lease to file path

3. Request for block IDs

4. block ID and list of DataNodes

v

40

HDFS Architecture: writing a file
@

1. Client sends request to create
a new file to HDFS

2. Lease to file path

3. Request for block IDs

4. block ID and list of DataNodes

Big Data FiIeJ

l 5. first DataNode

DataNode

v

&

NameNode

N

J

41

HDFS Architecture: writing a file
@

1. Client sends request to create
a new file to HDFS

2. Lease to file path

3. Request for block IDs

A

4. block ID and list of DataNodes

Big Data FiIeJ

l 5. first DataNode

DataNode

DataNode

6. second DataNode

v

&

NameNode

N

J

42

HDFS Architecture: writing a file

1. Client sends request to create
a new file to HDFS / \

2. Lease to file path

v

A

NameNode
3. Request for block IDs

4. block ID and list of DataNodes \ j

v

A

Big Data File

5. first DataNode

DataNode DataNode DataNode

6. second DataNode 7. thlrd DataNode

Hadoop Cluster Architecture

NodeManager NodeManager NodeManager NodeManager
DataNode DataNode DataNode DataNode

YARN Architecture: ResourceManager

NodeManager NodeManager NodeManager NodeManager

DataNode DataNode DataNode DataNode

YARN Architecture: ResourceManager

SCHEDULER

- controls cluster
resource usage

- configured by the
Hadoop admin

- enables multitenency
and SLAs

NodeManager NodeManager NodeManager NodeManager
DataNode DataNode DataNode DataNode

YARN Architecture: ResourceManager

SCHEDULER SECURITY

- controls cluster - web app proxy
resource usage - access control lists

- configured by the - token management
Hadoop admin for validation of

- enables multitenency requests
and SLAs

NodeManager NodeManager NodeManager NodeManager
DataNode DataNode DataNode DataNode

YARN Architecture: ResourceManager

Master

-

ResourceManager

SCHEDULER
- controls cluster
resource usage

- configured by the
Hadoop admin

- enables multitenency
and SLAs

4

SECURITY
- web app proxy

- access control lists

- token management
for validation of
requests

NODE MANAGEMENT
- NodeManager
monitoring

- submits application
master requests

- verifies lunching of
containers

- monitors AppMaster

4

R

\\

4

' Y

' Y

'V Y

N

\@/

\@/

NodeManager NodeManager NodeManager NodeManager
DataNode DataNode DataNode DataNode

\@/

48

YARN Architecture: ResourceManager

Master

>

SCHEDULER

- controls cluster
resource usage

- configured by the
Hadoop admin

- enables multitenency
and SLAs

ResourceManager

4

SECURITY

- web app proxy

- access control lists

- token management
for validation of
requests

NODE MANAGEMENT

- NodeManager
monitoring

- submits application
master requests

- verifies lunching of
containers

- monitors AppMaster

4

\

NodeManager

DataNode
I

NodeManager

DataNode
I

NodeManager

DataNode
I

NodeManager

DataNode
I

YARN Architecture: NodeManager

NodeManager

Responsible for the health
of the Worker and sends
status to ResourceManager

Manages CPU and RAM
of the Worker

=

DataNode

YARN Architecture: NodeManager

Worker
/ NodeManager \

Responsible for the health
of the Worker and sends
status to ResourceManager

N ~ ~

[DataNode }

Manages CPU and RAM
of the Worker

CPU and RAM

Container Container Container Container Container

Task 1 Task 2 Task 3 Task 4 Task 5

Writing a MapReduce Program

Based on key-value pairs
Each job is composed of one or more MR stages

Each MR stage comprises:

* the map phase
* the shuffle-and-sort phase
* the reduce phase

The programmer focuses on the problem. Replication,
fault tolerance, scheduling, re-scheduling and other low
level procedures are handled by HDFS or YARN.

52

Complete MapReduce API

The programmer must implement the following functions:

map(): accepts a set of key-value pairs and generates another list of key-value pairs.

combine(): performs an aggregation before sending the data to reducers (reduces
network traffic).

partition(): uses a hash function to distribute data to reducers (load balancing,
avoids hotspots).

reduce(): accepts a key and a list of values for this specific key and performs an
aggregation.

Note: combine() and partition() are optional

53

Simple Example: WordCount

Given a potentially massive txt file, compute the number of
occurrences of every word. For every word, output a pair

(word, #occurrences)

The number of pairs in the output equals the number of
unique words in the file.

E.qQ.,
Input: can you see the real me? can you? can you?

output: (can,3), (you,3), (see,l), (the,1), (real,1), (me,1)

54

INPUT
(from HDFS)

hello there

hello again

hello to the world

this is a small

example to explain

how MR works

3 splits
(HDFS)

WordCount Example

55

INPUT
(from HDFS)

WordCount Example

MAP
phase

hello there

hello again

— M1

*

hello to the world

this is a small

— M2

*

example to explain

how MR works

— M3

3 splits
(HDFS)

*

3 mappers

56

INPUT
(from HDFS)

hello there

hello again

hello to the world

this is a small

—>

example to explain

how MR works

—>

3 splits
(HDFS)

o,

WordCount Example

MAP
phase

m

)

(hello, 1)
(there, 1)
(hello, 1)
(again, 1)

M2

M3

*

(hello, 1) (this, 1)
(to, 1) (is, 1)
(the, 1) (a, 1)
(world, 1) (small, 1)

*

(example, 1)
(to, 1)
(explain, 1)
(how, 1)
(MR, 1)
(works, 1)

3 mappers 18 (k,v) pairs

(local FS)

57

INPUT
(from HDFS)

WordCount Example

hello there

hello again

hello to the world

this is a small

example to explain

how MR works

3 splits
(HDFS)

MAP SHUFFLING
phase phase
(again, 1)
(hello, 1) » (hello, 1)
(there, 1) | »{ (hello, 1)
— M1 (hello, 1) ... (hello, 1)
‘ (again,1) | (is, 1)
S e (small, 1)
(hello, 1) (this, 1) (the, 1)
(to, 1)~ (is, 1) (there, 1)
— M2 (the, 1) . (a, 1) (world, 1)
L/ (world, 1) (small, 1)
(a, 1)
(example, 1) (example,
— M3 (to, 1) 1)
- (explain, 1) (explain, 1)
L/ (how, 1) (how, 1)
(MR, 1) (MR, 1)
(works, 1) 4 (this, 1)
(o, 1)
(to, 1)

3 mappers

18 (k,v) pairs
(local FS)

WOrks, 1),

18 zk,v) pairs

58

INPUT
(from HDFS)

hello there

hello again

hello to the world

this is a small

—»

example to explain

how MR works

—»

3 splits
(HDFS)

WordCount Example

3 mappers 18 (k,v) pairs

(local FS)

MAP SHUFFLING REDUCE
phase phase phase
(again, 1)
(hello, 1) » (hello, 1)
(there, 1) | » (hello, 1)
& (gan1) | (il
R (small, 1)
(hello, 1) (this, 1) (the, 1)
(to, 1)~ (is, 1) (there, 1)
- M2 (the, 1) . (a, 1) (world, 1)
L/ (world, 1) (small, 1)
(a, 1)
(example, 1) (example,
M3 (to, 1) 1)

' (explain, 1)~ | (explain, 1)
L/ (how, 1) (how, 1) R2
(MR, 1) (MR, 1)

(works, 1) 4 (this, 1)
(o, 1)
(to, 1)

works, 1)

18 ﬁk,v) pairs 2 reducers

59

INPUT
(from HDFS)

WordCount Example

hello there

hello again

hello to the world

this is a small

example to explain

how MR works

3 splits
(HDFS)

OUTPUT
(to HDFS)

(again, 1)
(hello, 3)
(is, 1)
(small, 1)
(the, 1)
(there, 1)
(world, 1)

(a, 1)
(example, 1
(explain, 1)
(how, 1)
(MR, 1)
(this, 1)

(to, 2)
(works, 1)

MAP SHUFFLING REDUCE
phase phase phase
(again, 1)
(hello, 1) » (hello, 1)
(there,1) | » (hello, 1)
— M1 (hello, 1)-p »| (hello, 1) R1
* (again,1) | (is, 1)
S P (small, 1)
(hello, 1) ~(this, 1 (the, 1)
(to, 1)~ (is, 1) (there, 1)
— M2 (the, 1) . (a, 1) (world, 1)
L/ (world, 1) (small, 1)
(a, 1)
(example, 1) (example,
~ (explain, 1) | (explain, 1)
L (how, 1) (how, 1) R2
(MR, 1) | (MR, 1)
(works, 1) 4l (this, 1)
A (to, 1)
(to, 1)
_ WOTKS, 1),
3 mappers 18 (k,v) pairs 18 ﬁk,v) pairs 2 reducers

(local FS)

60

Workflow in Hadoop

User
Program

%

ifork ™

F
#

L9
L
.

input slice 0
input slice 1 output 0
input slice 2
input slice 3 output 1
input slice 4
Input Map Intermediate files Reduce Output
files phase (on local disks) phase files

HDFS HDFS 61

WordCount Source Code

import java.io.IOException;
import java.util.*;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.conf.*;

import org.apache.hadoop.io.*;

import org.apache.hadoop.mapreduce.*;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

public class WordCount {

public static class Map extends Mapper<LongWritable, Text, Text,
IntWritable> {

private final static IntWritable one = new IntWritable(1);
private Text word = new Text();

public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {

String line = value.toString();

StringTokenizer tokenizer = new StringTokenizer(line);

while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());
context.write(word, one);

public static class Reduce extends Reducer<Text, IntWritable, Text,
IntWritable> {

public void reduce(Text key, Iterable<IntWritable> values,
Context context)

throws IOException, InterruptedException {
int sum = 0;
for (IntwWritable val : values) {
sum += val.get();
}

context.write(key, new IntWritable(sum));

public static void main(String[] args) throws Exception {

Configuration conf = new Configuration();

Job job = new Job(conf, "wordcount");

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(IntWritable.class);

job.setMapperClass(Map.class);

job.setReducerClass(Reduce.class);

job.setInputFormatClass(TextInputFormat.class);

job.setOutputFormatClass(TextOutputFormat.class);

FileInputFormat.addInputPath(job, new Path(args[0]));

FileOutputFormat.setOutputPath(job, new Path(args[1]));

job.waitForCompletion(true);

WordCount: the driver program

public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();

Job

job.
job.
job.
job.
job.
job.

job = new Job(conf, "wordcount");
setOutputKeyClass(Text.class);
setOutputValueClass(IntwWritable.class);
setMapperClass(Map.class);
setReducerClass(Reduce.class);
setInputFormatClass(TextInputFormat.class);
setOutputFormatClass(TextOutputFormat.class);

FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.waitForCompletion(true);

63

WordCount: the map() function

public static class Map extends Mapper<LongWritable, Text, Text,
IntWritable> {

private final static IntWritable one = new IntWritable(1l);
private Text word = new Text();

public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {

String line = value.toString();

StringTokenizer tokenizer = new StringTokenizer(line);

while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());
context.write(word, one);,

64

WordCount: the reduce() function

public static class Reduce extends Reducer<Text,
IntWritable> {

IntWritable, Text,

public void reduce(Text key, Iterable<IntWritable> values,

Context context)
throws IOException, InterruptedException {
int sum = 0;
for (IntwWritable val : values) {
sum += val.get();

}

context.write(key, new IntWritable(sum));

65

Theoretical Issues In MapReduce

Paper titles:

“On the Computational Complexity of MapReduce”

“A new Computation Model for Cluster Computing”

“Fast Greedy Algorithms in MapReduce and Streaming”
“Minimal MapReduce Algorithms”

“Filtering: A Method for Solving Graph Problems in MapReduce”
“A Model of Computation for MapReduce” (SODA 2010)

66

MapReduce Limitations

- Difficult to design efficient/optimal algorithms (everything
must be expressed in key-value pairs)

- A lot of disk 1/0Os (mappers reading HDFS and writing local
data)

- A lot of network traffic (shuffling is expensive)
- Difficult to handle data skew (the curse of the last reducer!)

- Not very good for iterative processing (requires many MR
rounds, memory contents are not available across rounds)

- Not very good for streaming applications

67

Case Studies

Nokia

Nokia collects and analyzes vast amounts of data from mobile phones

Problem:
(1) Dealing with 100TB of structured data and 500TB+ of semi-structured data
(2) 10s of PB across Nokia, 1TB / day

Solution: HDFS data warehouse allows storing all the semi/multi structured data and offers processing data

at peta byte scale
Hadoop Vendor: Cloudera

Cluster/Data size:
(1) 500TB of data
(2) 10s of PB across Nokia, 1TB / day

Links:

(1) Cloudera case study (Published Apr 2012)
(http://hadoopilluminated.com/hadoop_illuminated/cached_reports/Cloudera_Nokia_Case_Study Hadoop.pdf)

(2) strata NY 2012 presentation slides (http://hadoopilluminated.com/hadoop_illuminated/cached_reports/Nokia_Bigdata.pdf)
Strata NY 2012 presentation

68

Case Studies

China Mobil Guangdong

Problem: Storing billions of mobile call records and providing real time access to the call records and billing
information to customers. Traditional storage/database systems couldn't scale to the loads and provide a cost
effective solution

Solution: HBase is used to store billions of rows of call record details. 30TB of data is added monthly
Hadoop vendor: Intel
Hadoop cluster size: 100+ nodes

China Mobil Quangdong (http://gd.10086.cn/)
Intel APAC presentation (http://www.slideshare.net/IntelAPAC/apac-big-data-dc-strategy-update-for-idh-launch-rk)

69

Storage and Analysis at Internel Scale

Related Books

The Definitive Guide

O’REILLY®

Tom White

(huck Lam

l HAHHING

Alex Holmes

|
INCLUDES 85§ TECHNIQUES

MMAMN\NG

70

Related MOQOCs

Introduction to Apache Hadoop (edX)

https://www.edx.org/course/introduction-apache-hadoop-linuxfoundationx-
[fs103x

Hadoop platform and application framework (Coursera)

https://www.coursera.org/learn/hadoop

Introduction to Big Data (Coursera)

https://www.coursera.org/learn/big-data-introduction

71

Questions ?

Thank You

72

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72

