

Big Data Analytics and Cluster Computing

with Apache Hadoop

Apostolos N. Papadopoulos
Associate Professor

Department of Informatics
Aristotle University of Thessaloniki, Greece

papadopo@csd.auth.gr

 2

Outline

- Big Data everywhere
- Why one machine is not enough ?
- Parallel architectures
- Important issues in cluster computing
- Hadoop MapReduce
- Architecture of HDFS
- Architecture of YARN cluster manager
- MapReduce limitations

 3

Big Data Everywhere

 4

Big Data Everywhere

 5

The 3 V's of Big Data

 6

The 5 V's of Big Data

 7

The 7 V's of Big Data

 8

Big Data is not a Hype

 9

Motivation

We need more CPUs because:

we can run programs faster

We need more disks because:

modern applications require huge amounts of data

with many disks we can perform I/O in parallel

Assume that we are able to build a single disk with 500 TB capacity. This is
enough to store more than 20 billion webpages (assuming an average
size per page of 20KB).

However, just to scan these 500 TB we need more than 4 months if the
disk can bring 40 MB/sec. Imagine the time required to process the data !

 10

In the Near Future

“IBM Research and Dutch astronomy agency
Astron work on new technology to handle

 one exabyte of raw data per day

that will be gathered by the world largest radio
telescope, the Square Kilometer Array, when
activated in 2024.”

 11

Some Challenges

 Scalability
 Load balancing
 Fault Tolerance
 Efficiency
 Data Stream processing
 Support for complex objects
 Accuracy/Speed tradeoffs (with performance

guarantees)

 12

Parallel Architectures

Shared Memory: processors share a common main
memory and also share secondary storage (e.g.,
disks)

Shared Disk: processors share only secondary
storage, whereas each processor has its own
private memory

Shared Nothing: processors do not share anything,
each one has private secondary storage and
memory

 13

Parallel Architectures

P P P

M M M

InterconnectionP P P

Interconnection

Shared Memory Interconnection

P P P

M M M

shared memory shared disk shared nothing

 14

Scalability

Scale-Up: put more resources

into the system to make it

bigger and more powerful

Scale-Out: connect a large number of “ordinary” machines and create a cluster

Scale-Out is more powerful than Scale-Up, and also less expensive

I eat a lot,
I am very expensive,

but I am robust

 15

Scalability: measures

Among the three parallel architectures, shared-nothing is the one
that scales best. This is the main reason for being adopted for
building massively parallel systems (thousands of processors)

- Speedup: monitor performance by increasing the number of
processors

- Sizeup: monitor performance by increasing only the dataset
size

- Scaleup: monitor performance by increase both the number of
processors and the dataset size

 16

The Speedup Curve

 17

Real Curves are Non-Linear

Why ?

Start-up costs: cost for starting an operation in a processor

Interference: cost for communication among processors and
resource congestion

Skew: either in data or tasks → the slowest processor becomes the
bottleneck

Result formation: partial results from each processor must be
combined to provide the final result.

Failures: some tasks may fail and they need to be restarted.

 18

Cluster Configuration Example

Aggregation switch

Rack switch

- 40 nodes/rack, 1000-4000 nodes in cluster
- 1 Gbps bandwidth within rack, 8 Gbps out of rack
- 8 x 2GHz cores, 8 GB RAM, 4 disks (= 4 TB?)

Source: Matei Zaharia

 19

Fault Tolerance

Failures are very common in massively parallel systems

Let P the probability that a disk will fail in the next month. If we have D
disks in total, the probability that at least one disk will fail is given by:

e.g., D = 10000, P = 0.0001

Prob {at least one disk failure} = 0.63

Prob {atleastonediskfailure }=1−(1−P)D

 20

Fault Tolerance

Failures may happen because of:

Hardware not working properly

Disk failure

Memory failure (8% of DIMMs have problems)

Inadequate cooling (CPU overheating)

Resource unavailability

Due to overload

We must provide fault tolerance in the cluster!

 21

Fault Tolerance

Simplest protocol: if there is a failure, restart the
job.

Assume a job that requires 1 week of processing.
If there is a failure once per week, the job will
never finish!

 22

Fault Tolerance

A better protocol:

Replicate the data and also split the job in parts
and replicate them as well. As an alternative,
submit a smaller job (task) and if it fails then start
another one.

A large job must be decomposed to simpler ones.

 23

Meet Hadoop

A very successful platform to run jobs in massively parallel systems
(thousands of processors and disks).

It contains many different components. We will focus on:

– the Hadoop MapReduce layer

– the YARN resource manager

– the Hadoop Distributed File System (HDFS)

Hadoop is the open-source alternative of MapReduce and Google File System (GFS)
invented by Google. It has been used in Google's data centers mainly for:

– constructing and maintaining the Inverted Index and

– executing the PageRank algorithm.

 24

Meet Hadoop

“The name my kid gave a stuffed yellow elephant. Short, relatively
easy to spell and pronounce, meaningless, and not used elsewhere:
those are my naming criteria. Kids are good at generating such. Googol
is a kid’s term”

Doug Cutting, explains how the name came about

From Wikipedia: Douglass
Read "Doug" Cutting is an
advocate and creator of open-
source search technology. He
originated Lucene and, with
Mike Cafarella, Nutch, both
open-source search
technology projects which are
now managed through the
Apache Software Foundation.
He is also the creator of
Hadoop (Yahoo!, Cloudera).

 25

The Hadoop Ecosystem

Hadoop Distributed File System (HDFS)

Hadoop MapReduce

Pig
(Scripts)

Hive
(SQL queries)

Mahout
(Machine Learning)

Hbase
(NoSQL)

Ambari
(Provisioning, Management, Monitoring)

O
oz

ie
(W

or
kf

lo
w

 &
 S

ch
ed

ul
in

g)

Z
oo

K
ee

pe
r

(C
oo

rd
in

at
io

n)
S

qoop
(D

ata Int egration)

Yet Another Resource Negotiator (YARN)

Other
Frameworks

 26

The Hadoop Ecosystem

 27

Hadoop Cluster Architecture

NodeManager

DataNode

Worker 1

NodeManager

DataNode

Worker 2

NodeManager

DataNode

Worker 3

NodeManager

DataNode

Worker 4

NameNode

ZooKeeper

Master 1

Resource Manager

ZooKeeper

Master 2

Secondary NameNode

...

...

 28

HDFS Architecture

HDFS stands for Hadoop Distributed File System

It is a File System that lives across the nodes of a cluster. It stores
files, each file has a filename and is located in a specific directory.

It supports most of the operations supported by an ordinary File
System.

Every HDFS cluster is comprised of:

- one or two NameNodes and
- many DataNodes

 29

NameNode (one or two per cluster)

- Represents a single filesystem namespace rooted at /

- Is the master service of HDFS

- Determines and maintains how the chunks of data are distributed across the
DataNodes

- Actual data never resides here, only metadata (e.g., maps of where blocks are
distributed).

DataNode (as many as you want per cluster)

- Stores the chunks of data, and is responsible for replicating the chunks across
other DataNodes

- Default number of replicas on most clusters is 3 (but it can be changed on a
per-file basis)

- Default block size on most clusters is 128MB.

HDFS Architecture

 30

HDFS Architecture: NameNode

DataNode DataNode DataNode DataNode

Master

NameNode

 31

HDFS Architecture: NameNode

DataNode DataNode DataNode DataNode

Master

NameNode

METADATA
- permissions
- ownership
- quotas
- block size
- replication level
- access time
- last update time

 32

HDFS Architecture: NameNode

DataNode DataNode DataNode DataNode

Master

NameNode

METADATA
- permissions
- ownership
- quotas
- block size
- replication level
- access time
- last update time

NAMESPACE
- file hierarchy
- directory names
- file names

 33

HDFS Architecture: NameNode

DataNode DataNode DataNode DataNode

Master

NameNode

METADATA
- permissions
- ownership
- quotas
- block size
- replication level
- access time
- last update time

NAMESPACE
- file hierarchy
- directory names
- file names

BLOCK MAPPING
For every file name
it keeps track of the
block identifiers (IDs)

 34

HDFS Architecture: NameNode

DataNode DataNode DataNode DataNode

Master

NameNode

METADATA
- permissions
- ownership
- quotas
- block size
- replication level
- access time
- last update time

NAMESPACE
- file hierarchy
- directory names
- file names

BLOCK MAPPING
For every file name
it keeps track of the
block identifiers (IDs)

Important: DataNodes initiate connections to the NameNode (not vice versa)

 35

HDFS Architecture: replication

1 2 3 4

1 2 4 1 2 3 1 3 4 2 3 4

Replication in HDFS

The the file is split in chunks. Each is replicated three times in this example.
One of the chunk is located at a different rack for increased fault tolerance.

This file is split into
4 chunks (splits)

 36

HDFS Architecture: replication

NameNode

DataNode1 DataNode2 DataNode3 DataNode4

A A A

The NameNode does not
receive a heartbeat from
DataNode2. It assume that
DataNode2 is down and
therefore it will initiate a
replication process for block A
to guarantee a replication
factor of 3.

A

DOWN

 37

HDFS Architecture: writing a file

NameNodeClient

Big Data File

1. Client sends request to create
a new file to HDFS

 38

HDFS Architecture: writing a file

NameNodeClient

Big Data File

1. Client sends request to create
a new file to HDFS

2. Lease to file path

 39

HDFS Architecture: writing a file

NameNodeClient

Big Data File

1. Client sends request to create
a new file to HDFS

2. Lease to file path

3. Request for block IDs

 40

HDFS Architecture: writing a file

NameNodeClient

Big Data File

1. Client sends request to create
a new file to HDFS

2. Lease to file path

3. Request for block IDs

4. block ID and list of DataNodes

 41

HDFS Architecture: writing a file

NameNodeClient

Big Data File

1. Client sends request to create
a new file to HDFS

2. Lease to file path

3. Request for block IDs

4. block ID and list of DataNodes

DataNode

5. first DataNode

 42

HDFS Architecture: writing a file

NameNodeClient

Big Data File

1. Client sends request to create
a new file to HDFS

2. Lease to file path

3. Request for block IDs

4. block ID and list of DataNodes

DataNode DataNode

5. first DataNode

6. second DataNode

 43

HDFS Architecture: writing a file

NameNodeClient

Big Data File

1. Client sends request to create
a new file to HDFS

2. Lease to file path

3. Request for block IDs

4. block ID and list of DataNodes

DataNode DataNode DataNode

5. first DataNode

6. second DataNode 7. third DataNode

 44

Hadoop Cluster Architecture

NodeManager

DataNode

Worker 1

NodeManager

DataNode

Worker 2

NodeManager

DataNode

Worker 3

NodeManager

DataNode

Worker 4

NameNode

ZooKeeper

Master 1

Resource Manager

ZooKeeper

Master 2

Secondary NameNode

...

...

 45

YARN Architecture: ResourceManager

DataNode DataNode DataNode DataNode

Master

ResourceManager

NodeManager NodeManager NodeManager NodeManager

 46

YARN Architecture: ResourceManager

DataNode DataNode DataNode DataNode

Master

ResourceManager

NodeManager NodeManager NodeManager NodeManager

SCHEDULER
- controls cluster
 resource usage
- configured by the
 Hadoop admin
- enables multitenency
 and SLAs

 47

YARN Architecture: ResourceManager

DataNode DataNode DataNode DataNode

Master

ResourceManager

NodeManager NodeManager NodeManager NodeManager

SCHEDULER
- controls cluster
 resource usage
- configured by the
 Hadoop admin
- enables multitenency
 and SLAs

SECURITY
- web app proxy
- access control lists
- token management
 for validation of
 requests

 48

YARN Architecture: ResourceManager

DataNode DataNode DataNode DataNode

Master

ResourceManager

NodeManager NodeManager NodeManager NodeManager

SCHEDULER
- controls cluster
 resource usage
- configured by the
 Hadoop admin
- enables multitenency
 and SLAs

SECURITY
- web app proxy
- access control lists
- token management
 for validation of
 requests

NODE MANAGEMENT
- NodeManager
 monitoring
- submits application
 master requests
- verifies lunching of
 containers
- monitors AppMaster

 49

YARN Architecture: ResourceManager

DataNode DataNode DataNode DataNode

Master

ResourceManager

NodeManager NodeManager NodeManager NodeManager

SCHEDULER
- controls cluster
 resource usage
- configured by the
 Hadoop admin
- enables multitenency
 and SLAs

SECURITY
- web app proxy
- access control lists
- token management
 for validation of
 requests

NODE MANAGEMENT
- NodeManager
 monitoring
- submits application
 master requests
- verifies lunching of
 containers
- monitors AppMaster

 50

YARN Architecture: NodeManager

DataNode

Worker

NodeManager

Manages CPU and RAM
of the Worker

Responsible for the health
of the Worker and sends
status to ResourceManager

 51

YARN Architecture: NodeManager

DataNode

Worker

NodeManager

Manages CPU and RAM
of the Worker

Responsible for the health
of the Worker and sends
status to ResourceManager

Container
Task 1

Container
Task 2

Container
Task 3

Container
Task 4

Container
Task 5

CPU and RAM

 52

Writing a MapReduce Program

Based on key-value pairs

Each job is composed of one or more MR stages

Each MR stage comprises:
 the map phase
 the shuffle-and-sort phase
 the reduce phase

The programmer focuses on the problem. Replication,
fault tolerance, scheduling, re-scheduling and other low
level procedures are handled by HDFS or YARN.

 53

Complete MapReduce API

The programmer must implement the following functions:

map(): accepts a set of key-value pairs and generates another list of key-value pairs.

combine(): performs an aggregation before sending the data to reducers (reduces
network traffic).

partition(): uses a hash function to distribute data to reducers (load balancing,
avoids hotspots).

reduce(): accepts a key and a list of values for this specific key and performs an
aggregation.

Note: combine() and partition() are optional

 54

Simple Example: WordCount

Given a potentially massive txt file, compute the number of
occurrences of every word. For every word, output a pair

 (word, #occurrences)

The number of pairs in the output equals the number of
unique words in the file.

E.g.,

input: can you see the real me? can you? can you?

output: (can,3), (you,3), (see,1), (the,1), (real,1), (me,1)

 55

WordCount Example

hello there

hello again

hello to the world

this is a small

example to explain

how MR works

INPUT
(from HDFS)

3 splits
(HDFS)

 56

WordCount Example

hello there

hello again

hello to the world

this is a small

example to explain

how MR works

M1

M2

M3

MAP
phase

INPUT
(from HDFS)

3 splits
(HDFS)

3 mappers

 57

WordCount Example

hello there

hello again

hello to the world

this is a small

example to explain

how MR works

M1

M2

M3

(hello, 1)
(there, 1)
(hello, 1)
(again, 1)

(hello, 1) (this, 1)
(to, 1) (is, 1)
(the, 1) (a, 1)
(world, 1) (small, 1)

(example, 1)
(to, 1)
(explain, 1)
(how, 1)
(MR, 1)
(works, 1)

MAP
phase

INPUT
(from HDFS)

3 splits
(HDFS)

3 mappers 18 (k,v) pairs
(local FS)

 58

WordCount Example

hello there

hello again

hello to the world

this is a small

example to explain

how MR works

M1

M2

M3

(hello, 1)
(there, 1)
(hello, 1)
(again, 1)

(hello, 1) (this, 1)
(to, 1) (is, 1)
(the, 1) (a, 1)
(world, 1) (small, 1)

(example, 1)
(to, 1)
(explain, 1)
(how, 1)
(MR, 1)
(works, 1)

MAP
phase

SHUFFLING
phase

INPUT
(from HDFS)

3 splits
(HDFS)

3 mappers 18 (k,v) pairs
(local FS)

18 (k,v) pairs

(again, 1)
(hello, 1)
(hello, 1)
(hello, 1)
(is, 1)
(small, 1)
(the, 1)
(there, 1)
(world, 1)

(a, 1)
(example,
1)
(explain, 1)
(how, 1)
(MR, 1)
(this, 1)
(to, 1)
(to, 1)
(works, 1)

 59

WordCount Example

hello there

hello again

hello to the world

this is a small

example to explain

how MR works

M1

M2

M3

(hello, 1)
(there, 1)
(hello, 1)
(again, 1)

(hello, 1) (this, 1)
(to, 1) (is, 1)
(the, 1) (a, 1)
(world, 1) (small, 1)

(example, 1)
(to, 1)
(explain, 1)
(how, 1)
(MR, 1)
(works, 1)

MAP
phase

REDUCE
 phase

R1

R2

SHUFFLING
phase

INPUT
(from HDFS)

3 splits
(HDFS)

3 mappers 18 (k,v) pairs
(local FS)

2 reducers18 (k,v) pairs

(again, 1)
(hello, 1)
(hello, 1)
(hello, 1)
(is, 1)
(small, 1)
(the, 1)
(there, 1)
(world, 1)

(a, 1)
(example,
1)
(explain, 1)
(how, 1)
(MR, 1)
(this, 1)
(to, 1)
(to, 1)
(works, 1)

 60

WordCount Example

hello there

hello again

hello to the world

this is a small

example to explain

how MR works

M1

M2

M3

(hello, 1)
(there, 1)
(hello, 1)
(again, 1)

(hello, 1) (this, 1)
(to, 1) (is, 1)
(the, 1) (a, 1)
(world, 1) (small, 1)

(example, 1)
(to, 1)
(explain, 1)
(how, 1)
(MR, 1)
(works, 1)

MAP
phase

REDUCE
 phase

R1

R2

SHUFFLING
phase

INPUT
(from HDFS)

(again, 1)
(hello, 3)
(is, 1)
(small, 1)
(the, 1)
(there, 1)
(world, 1)

(a, 1)
(example, 1
(explain, 1)
(how, 1)
(MR, 1)
(this, 1)
(to, 2)
(works, 1)

OUTPUT
(to HDFS)

3 splits
(HDFS)

3 mappers 18 (k,v) pairs
(local FS)

2 reducers

(again, 1)
(hello, 1)
(hello, 1)
(hello, 1)
(is, 1)
(small, 1)
(the, 1)
(there, 1)
(world, 1)

(a, 1)
(example,
1)
(explain, 1)
(how, 1)
(MR, 1)
(this, 1)
(to, 1)
(to, 1)
(works, 1)

18 (k,v) pairs

 61

Workflow in Hadoop

HDFS HDFS

WordCount Source Code
import java.io.IOException;

import java.util.*;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.conf.*;

import org.apache.hadoop.io.*;

import org.apache.hadoop.mapreduce.*;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

public class WordCount {

 public static class Map extends Mapper<LongWritable, Text, Text,
IntWritable> {

 private final static IntWritable one = new IntWritable(1);

 private Text word = new Text();

 public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {

 String line = value.toString();

 StringTokenizer tokenizer = new StringTokenizer(line);

 while (tokenizer.hasMoreTokens()) {

 word.set(tokenizer.nextToken());

 context.write(word, one);

 }

 }

 }

 public static class Reduce extends Reducer<Text, IntWritable, Text,
IntWritable> {

 public void reduce(Text key, Iterable<IntWritable> values,
Context context)

 throws IOException, InterruptedException {

 int sum = 0;

 for (IntWritable val : values) {

 sum += val.get();

 }

 context.write(key, new IntWritable(sum));

 }

 }

 public static void main(String[] args) throws Exception {

 Configuration conf = new Configuration();

 Job job = new Job(conf, "wordcount");

 job.setOutputKeyClass(Text.class);

 job.setOutputValueClass(IntWritable.class);

 job.setMapperClass(Map.class);

 job.setReducerClass(Reduce.class);

 job.setInputFormatClass(TextInputFormat.class);

 job.setOutputFormatClass(TextOutputFormat.class);

 FileInputFormat.addInputPath(job, new Path(args[0]));

 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 job.waitForCompletion(true);

 }

}

 63

WordCount: the driver program

public static void main(String[] args) throws Exception {

 Configuration conf = new Configuration();

 Job job = new Job(conf, "wordcount");

 job.setOutputKeyClass(Text.class);

 job.setOutputValueClass(IntWritable.class);

 job.setMapperClass(Map.class);

 job.setReducerClass(Reduce.class);

 job.setInputFormatClass(TextInputFormat.class);

 job.setOutputFormatClass(TextOutputFormat.class);

 FileInputFormat.addInputPath(job, new Path(args[0]));

 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 job.waitForCompletion(true);

 }

 64

WordCount: the map() function

public static class Map extends Mapper<LongWritable, Text, Text,
IntWritable> {

 private final static IntWritable one = new IntWritable(1);

 private Text word = new Text();

 public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {

 String line = value.toString();

 StringTokenizer tokenizer = new StringTokenizer(line);

 while (tokenizer.hasMoreTokens()) {

 word.set(tokenizer.nextToken());

 context.write(word, one);

 }

 }

 }

 65

WordCount: the reduce() function

public static class Reduce extends Reducer<Text, IntWritable, Text,
IntWritable> {

 public void reduce(Text key, Iterable<IntWritable> values,
Context context)

 throws IOException, InterruptedException {

 int sum = 0;

 for (IntWritable val : values) {

 sum += val.get();

 }

 context.write(key, new IntWritable(sum));

 }

 }

 66

Theoretical Issues in MapReduce

Paper titles:

 “On the Computational Complexity of MapReduce”

 “A new Computation Model for Cluster Computing”

 “Fast Greedy Algorithms in MapReduce and Streaming”

 “Minimal MapReduce Algorithms”

 “Filtering: A Method for Solving Graph Problems in MapReduce”

 “A Model of Computation for MapReduce” (SODA 2010)

 67

MapReduce Limitations

- Difficult to design efficient/optimal algorithms (everything
must be expressed in key-value pairs)

- A lot of disk I/Os (mappers reading HDFS and writing local
data)

- A lot of network traffic (shuffling is expensive)

- Difficult to handle data skew (the curse of the last reducer!)

- Not very good for iterative processing (requires many MR
rounds, memory contents are not available across rounds)

- Not very good for streaming applications

 68

Case Studies

Nokia
Nokia collects and analyzes vast amounts of data from mobile phones

Problem:

(1) Dealing with 100TB of structured data and 500TB+ of semi-structured data

(2) 10s of PB across Nokia, 1TB / day

Solution: HDFS data warehouse allows storing all the semi/multi structured data and offers processing data

at peta byte scale

Hadoop Vendor: Cloudera

Cluster/Data size:

(1) 500TB of data

(2) 10s of PB across Nokia, 1TB / day

Links:

(1) Cloudera case study (Published Apr 2012)
(http://hadoopilluminated.com/hadoop_illuminated/cached_reports/Cloudera_Nokia_Case_Study_Hadoop.pdf)

(2) strata NY 2012 presentation slides (http://hadoopilluminated.com/hadoop_illuminated/cached_reports/Nokia_Bigdata.pdf)

Strata NY 2012 presentation

 69

Case Studies

China Mobil Guangdong

Problem: Storing billions of mobile call records and providing real time access to the call records and billing
information to customers. Traditional storage/database systems couldn't scale to the loads and provide a cost
effective solution

Solution: HBase is used to store billions of rows of call record details. 30TB of data is added monthly

Hadoop vendor: Intel

Hadoop cluster size: 100+ nodes

Links:

China Mobil Quangdong (http://gd.10086.cn/)

Intel APAC presentation (http://www.slideshare.net/IntelAPAC/apac-big-data-dc-strategy-update-for-idh-launch-rk)

 70

Related Books

 71

Related MOOCs

Introduction to Apache Hadoop (edX)

 https://www.edx.org/course/introduction-apache-hadoop-linuxfoundationx-
lfs103x

Hadoop platform and application framework (Coursera)

https://www.coursera.org/learn/hadoop

Introduction to Big Data (Coursera)

https://www.coursera.org/learn/big-data-introduction

 72

Thank You

Questions ?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72

