
Large-Scale Data Mining and
Machine Learning for Big Data

Analytics

 Apostolos N. Papadopoulos
 Associate Professor
 Data and Web Science Lab
 Aristotle University of Thessalonki
 http://datalab.csd.auth.gr

 2

Outline
- What is Spark?

- Basic Features

- Resilient Distributed Datasets (RDDs) and
DataFrames

- Existing Libraries

- Under the Hood

- Examples in Scala & Python

- Further Reading

 3

FUNDAMENTAL

CONCEPTS

 4

What is Spark ?

Apache Spark is a high-performance, general-purpose distributed computing system that has become the
most active Apache open source project, with more than 1,000 active contributors (from High Performance
Spark, O’Reilly, 2017).

In brief, Spark is a UNIFIED platform for cluster computing, enabling efficient big data management and
analytics.

It is an Apache Project and its current release is 2.3.1 (June 8, 2018) previous release 2.3.0 (February 28, 2018)

It is one of the most active Apache projects:

1.0.0 - May 30, 2014
1.0.1 - July 11, 2014
1.0.2 - August 5, 2014
1.1.0 - September 11, 2014
1.1.1 - November 26, 2014
1.2.0 - December 18, 2014
1.2.1 - February 9, 2014
1.3.0 - March 13, 2015
1.3.1 - April 17, 2015
1.4.0 - June 11, 2015

1.4.1 - July 15, 2015
1.5.0 - September 9, 2015
1.5.1 - October 2, 2015
1.5.2 - November 9, 2015
1.6.0 - January 4, 2016
1.6.1 - March 9, 2016
1.6.2 - June 25, 2016
2.0.0 - July 26, 2016
2.0.1 - October 3, 2016
2.0.2 - November 14, 2016

2.1.0 - December 28, 2016
2.1.1 - March 2, 2017
2.2.0 - Jully 11, 2017
2.2.1 - December 1, 2017
2.3.0 – February 28, 2018

 5

Who Invented Spark ?

University of Waterloo (B.Sc. Mathematics, Honors Computer Science)
Berkeley (Ph.D. cluster computing, big data)

Now: Assistant Professor @ CSAIL MIT

He also co-designed the MESOS cluster
manager and he contributed to Hadoop
fair scheduler.

Matei Zaharia

Born in Romania

 6

Who Can Benefit from Spark ?

Spark is an excellent platform for:

- Data Scientists: Spark's collection of data-focused tools helps data
scientists to go beyond problems that fit in a single machine

- Engineers: Application development in Spark is far more easy than other
alternatives. Spark's unified approach eliminates the need to use many
different special-purpose platforms for streaming, machine learning, and
graph analytics.

- Students: The rich API provided by Spark makes it extremely easy to
learn data analysis and program development in Java, Scala or Python.

- Researchers: New opportunities exist for designing distributed algorithms
and testing their performance in clusters.

 7

Spark in the Hadoop Ecosystem

Hadoop Distributed File System (HDFS)

Hadoop MapReduce

Pig
(Scripts)

Hive
(SQL queries)

Mahout
(Machine Learning)

Hbase
(NoSQL)

Ambari
(Provisioning, Management, Monitoring)

O
oz

ie
(W

or
kf

lo
w

 &
 S

ch
ed

ul
in

g)

Z
oo

K
ee

pe
r

(C
oo

rd
in

at
io

n)
S

qoop
(D

ata Int egration)

Yet Another Resource Negotiator (YARN)

Other
Frameworks

Spark is somewhere here

 8

Spark vs Hadoop MR: sorting 1PB

 Hadoop Spark 100TB Spark 1PB

Data Size 102.5 TB 100 TB 1000 TB

Elapsed Time 72 mins 23 mins 234 mins

Nodes 2100 206 190

Cores 50400 6592 6080

Reducers 10,000 29,000 250,000

Rate 1.42 TB/min 4.27 TB/min 4.27 TB/min

Rate/node 0.67 GB/min 20.7 GB/min 22.5 GB/min

Source: Databricks

 9

Spark Basics

Spark is designed to be fast and general purpose.

The main functionality is implemented in Spark Core. Other
components exist, that integrate tightly with Spark Core.

Benefits of tight integration:

- improvements in Core propagate to higher components

- it offers one unified environment

 10

Spark Basics: architecture

SQL
and

DataFrames
Streaming

MLlib
and
ML

GraphX
HDFS

Cassandra
Mesos YARN

Standalone
Scheduler

Local FS

Amazon S3

Hive

Hbase

CORE

INPUT/OUTPUT CLUSTER MANAGER

LIBS

Amazon
EC2

APIs

 11

Spark Basics: libraries

Currently the following libs exist and they are evolving
really-really fast:

- SQL Lib

- Streaming Lib

- Machine Learning Lib (Mllib & ML)

- Graph Lib (GraphX)

We outline all of them but later we will cover some details
about MLlib and GraphX

 12

Spark SQL

Spark SQL is a library for querying structures datasets as well as
distributed datasets.

Spark SQL allows relational queries expressed in SQL, HiveQL, or
Scala to be executed using Spark.

Example:

hc = HiveContext(sc)

rows = hc.sql(“select id, name, salary from emp”)

rows.filter(lambda r: r.salary > 2000).collect()

 13

Spark MLlib & ML
MLlib is Spark's scalable machine learning library.

Two APIs: the RDD API and the DataFrame API.

Some supported algorithms:
 linear SVM and logistic regression

 classification and regression tree
 k-means clustering
 recommendation via alternating least squares
 singular value decomposition (SVD)
 linear regression with L1- and L2-regularization
 multinomial naive Bayes
 basic statistics
 feature transformations

Runtime for logistic regression

 14

Spark GraphX

GraphX provides an API for graph processing and graph-parallel algorithms on-top of
Spark.

The current version supports:
 PageRank
 Connected components
 Label propagation
 SVD++
 Strongly connected components
 Triangle counting
 Core decomposition
 ... Runtime for PageRank

 15

Spark Streaming

Spark Streaming is a library to ease the development of
complex streaming applications.

Data can be inserted into Spark from different sources
like Kafka, Flume, Twitter, ZeroMQ, Kinesis or TCP
sockets can be processed using complex algorithms
expressed with high-level functions like map, reduce,
join and window.

 16

RESILIENT

DISTRIBUTED

DATASETS

 17

Resilient Distributed Datasets
(RDDs)

Data manipulation in Spark is heavily based on RDDs. An RDD is
an interface composed of:
 a set of partitions
 a list of dependencies
 a function to compute a partition given its parents
 a partitioner (optional)
 a set of preferred locations per partition (optional)

Simply stated: an RDD is a distributed collections of items. In particular:
an RDD is a read-only (i.e., immutable) collection of items partitioned
across a set of machines that can be rebuilt if a partition is destroyed.

 18

Resilient Distributed Datasets
(RDDs)

The RDD is the most fundamental concept in
Spark since all work in Spark is expressed as:

- creating RDDs

- transforming existing RDDs

- performing actions on RDDs

 19

Creating RDDs

Spark provides two ways to create an RDD:

- loading an already existing set of objects

- parallelizing a data collection in the driver

 20

Creating RDDs

// define the spark context

val sc = new SparkContext(...)

// hdfsRDD is an RDD from an HDFS file

val hdfsRDD = sc.textFile("hdfs://...")

// localRDD is an RDD from a file in the local file system

val localRDD = sc.textFile("localfile.txt")

// define a List of strings

val myList = List("this", "is", "a", "list", "of", "strings")

// define an RDD by parallelizing the List

val listRDD = sc.parallelize(myList)

 21

RDD Operations

There are transformations on RDDs that allow us to create
new RDDs: map, filter, groupBy, reduceByKey,
partitionBy, sortByKey, join, etc

Also, there are actions applied in the RDDs: reduce,
collect, take, count, saveAsTextFile, etc

Note: computation takes place only in actions and not on
transformations! (This is a form of lazy evaluation. More on
this soon.)

 22

RDD Operations: transformations

val inputRDD = sc.textFile("myfile.txt")

// lines containing the word “apple”

val applesRDD = inputRDD.filter(x => x.contains("apple"))

// lines containing the word “orange”

val orangesRDD = inputRDD.filter(x => x.contains("orange"))

// perform the union

val unionRDD = applesRDD.union(orangesRDD)

 23

RDD Operations: transformations

inputRDD

applesRDD

orangesRDD

unionRDD

filter

filter

union

Graphically speaking:

Spark maintains all necessary info to reconstruct an RDD based on the applied transformations.
This is called the “lineage”.

 24

RDD Operations: actions

An action denotes that finally something must be done

We use the action count() to find the number of lines in
unionRDD containing apples or oranges (or both) and
then we print the 5 first lines using the action take()

val numLines = unionRDD.count()

unionRDD.take(5).foreach(println)

 25

Lazy Evaluation

The benefits of being lazy

1. more optimization alternatives are possible if we see the big picture

2. we can avoid unnecessary computations

Ex:

Assume that from the unionRDD we need only the first 5 lines.

If we are eager, we need to compute the union of the two RDDs, materialize
the result and then select the first 5 lines.

If we are lazy, there is no need to even compute the whole union of the two
RDDs, since when we find the first 5 lines we may stop.

 26

Lazy Evaluation

At any point we can force the execution of
transformation by applying a simple action such
as count(). This may be needed for
debugging and testing.

 27

Basic RDD Transformations

Assume that our RDD contains: 1,2,3,1

map() rdd.map(x => x + 2) {3,4,5,3}

flatMap() rdd.flatMap(x => List(x-1,x,x+1)){0,1,2,1,2,3,2,3,4,0,1,2}

filter() rdd.filter(x => x>1) {2,3}

distinct()rdd.distinct() {1,2,3}

sample() rdd.sample(false,0.2) non-predictable

 28

Two-RDD Transformations

These transformations require two RDDs

union() rdd.union(another)

intersection() rdd.intersection(another)

subtract() rdd.substract(another)

cartesian() rdd.cartesian(another)

 29

Some Actions

collect() rdd.collect() {1,2,3,1}

count() rdd.count() 4

countByValue() rdd.countByValue() {(1,2),(2,1),(3,1)}

take() rdd.take(2) {1,2}

top() rdd.top(2) {3,2}

reduce() rdd.reduce((x,y) => x+y) 7

foreach() rdd.foreach(func)

 30

Transformations for Key-Value RDDs

A key-value RDD contains pairs (K,V), where K is considered as
the key and V is the value. This is a very important type of data
and therefore, Spark supported specialized transformations for
key-value RDDs, such as:

– groupByKey
– aggregateByKey
– reduceByKey
– sortByKey
– join

 31

Transformations for Key-Value RDDs

groupByKey([numPartitions]):
When called on a dataset of (K, V) pairs, returns a dataset of (K, Iterable<V>)

pairs.

aggregateByKey(zeroValue)(seqOp, combOp,
[numPartitions]):

When called on a dataset of (K, V) pairs, returns a dataset of (K, U) pairs where
the values for each key are aggregated using the given combine functions and
a neutral "zero" value.

reduceByKey(func, [numPartitions]):
When called on a dataset of (K, V) pairs, returns a dataset of (K, V) pairs where

the values for each key are aggregated using the given reduce function func,
which must be of type (V,V) => V.

 32

Transformations for Key-Value RDDs

sortByKey([ascending],[numPartitions]):
When called on a dataset of (K, V) pairs where K implements

Ordered, returns a dataset of (K, V) pairs sorted by keys in
ascending or descending order, as specified in the boolean
ascending argument.

join(otherDataset, [numPartitions]):
When called on datasets of type (K, V) and (K, W), returns a

dataset of (K, (V, W)) pairs with all pairs of elements for each
key. Outer joins are supported through leftOuterJoin,
rightOuterJoin, and fullOuterJoin.

 33

DIRECTED

ACYCLIC

GRAPHS

 34

RDDs and DAGs

A set of RDDs is transformed to a Directed Acyclic Graph (DAG)

Input: RDDs and partitions to compute

Output: output from actions on those partitions

Roles:

> Build stages of tasks

> Submit them to lower level scheduler (e.g. YARN, Mesos, Standalone) as
ready

> Lower level scheduler will schedule data based on locality

> Resubmit failed stages if outputs are lost

 35

Narrow vs Wide Dependencies

Narrow transformations are those in which each partition in the child RDD has
simple, finite dependencies on partitions in the parent RDD. Dependencies are only
narrow if they can be determined at design time, irrespective of the values of the
records in the parent partitions, and if each parent has at most one child partition.
Specifically, partitions in narrow transformations can either depend on one parent
(such as in the map operator), or a unique subset of the parent partitions that is
known at design time (coalesce). Thus narrow transformations can be executed on
an arbitrary subset of the data without any information about the other partitions.

In contrast, transformations with wide dependencies cannot be executed on arbitrary
rows and instead require the data to be partitioned in a particular way, e.g.,
according to the value of their key. In sort, for example, records have to be
partitioned so that keys in the same range are on the same partition.
Transformations with wide dependencies include sort , reduceByKey ,
groupByKey , join , and anything that calls the rePartition function.

 36

Narrow vs Wide Dependencies

Source: High Performance Spark, O’ Reilly, 2017.

 37

Spark Application Tree

Source: High Performance Spark, O’ Reilly, 2017.

 38

DAG Scheduling

d1

d2

join

d4

d3

join

d6d5
filter

d7
map

STAGE 1 STAGE 2

 39

DAG Scheduling

A

join C
filter

D

B

RDD objects DAG scheduler

A.join(B).filter(...).filter(...) split graph into stages of tasks
submit each stage

 40

Distributed Execution in Spark
Outline of the whole process:

1. The user submits a job with spark-submit.

2. spark-submit launches the driver program and invokes the main() method

specified by the user.

3. The driver program contacts the cluster manager to ask for resources to launch

executors.

4. The cluster manager launches executors on behalf of the driver program.

5. The driver process runs through the user application. Based on the RDD actions

and transformations in the program, the driver sends work to executors in the

form of tasks.

6. Tasks are run on executor processes to compute and save results.

7. If the driver’s main() method exits or it calls SparkContext.stop() , it will
terminate the executors and release resources from the cluster manager.

 41

Under the Hood

executor

WORKER 1

task task

executor

 WORKER 3

task task

spark session

driver

cluster
manager

(e.g. YARN)

cache cache

executor

 WORKER 2

task task
cache

 42

Under the Hood

executor

 WORKER 1

executor

 WORKER 2

executor

 WORKER 3

partition 1 partition 2 partition 3

main() {
...
val rdd = sc.textFile(“hdfs://myfile.txt”)
val num = rdd.filter(x => x > 10).count()
...

}

DRIVER

 43

main() {
...
val rdd = sc.textFile(“hdfs://myfile.txt”)
val num = rdd.filter(x => x > 10).count()
...

}

Under the Hood

executor

 WORKER 1

executor

 WORKER 2

executor

 WORKER 3

partition 1 partition 2 partition 3

DRIVER

rdd
filter
x=>x>10

rdd
filter
x=>x>10

rdd
filter
x=>x>10

Code is sent
from the driver
to workers

 44

Example Application

Given an RDD of integers, sum the occurrences
of the same integer for any integer larger than
100 and then sort in ascending order.

E.g., for the input: 1, 2, 1, 2, 3, 4, 8, 7, 6, 8, 6, 6

The output should be:

(1,2), (2,4), (3,3), (4,4), (6,18), (7,7), (8,16)

 45

Example Application

val result = rdd // our initial RDD
.filter(x => x>100) // keep relevant integers
.map(x => (x,x)) // create key-value RDD
.reduceByKey(_+_) // reduce
.filter((x,y) => y > 10) // filter on value
.sortByKey() // sort based on key
result.take(10).foreach(println) // print

CAN YOU IDENTIFY THE STAGES ?

 46

Example Application

 STAGE 1 STAGE 2 STAGE 3

filter(), map() reduceByKey(), filter() sortByKey()

 47

PERSISTENCE

 48

Persistence

In many cases we want to use the same RDD multiple times
without recomputing it.

Ex:

val result = rdd.map(x => x+1)

println(result.count())

println(result.collect().mkString(","))

We can ask Spark to keep (persist) the data.

 49

Persistence

val result = rdd.map(x => x+1)

result.persist(StorageLevel.DISK_ONLY)

println(result.count())

println(result.collect().mkString(","))

Persistence levels:

MEMORY_ONLY

MEMORY_ONLY_SER (objects are serialized)

MEMORY_AND_DISK

MEMORY_AND_DISK_SER (objects are serialized)

DISK_ONLY

If we try to put to many things in RAM Spark starts flushing data to disk using a Least Recently Used policy.

 50

BROADCAST VARIABLES

AND

ACCUMULATORS

 51

Broadcast Variables

“Broadcast variables allow the programmer to keep a read-only variable
cached on each machine rather than shipping a copy of it with
tasks. They can be used, for example, to give every node a copy of a
large input dataset in an efficient manner. Spark also attempts to
distribute broadcast variables using efficient broadcast algorithms to
reduce communication cost.” (source: Apache Spark website)

 A piece of information is broadcasted to all executors.
 Broadcast variables are set by the driver and are read-only by the

executors.
 Very useful feature to avoid sending large pieces of data again and

again.

 52

Broadcast Variables

val r = scala.util.Random

val vector = Array.fill(1000){r.nextInt(99)}

val rdd = Array.fill(1000000){r.nextInt(99)}.parallelize

val bvector = sc.broadcast(vector)

rdd.map(x => vector.contains(x))

rdd.map(x => bvector.value.contains(x))

 53

Accumulators

The value of an accumulator can be modified by
any executor (shared variable).

No special protection is required, Spark takes
care of this.

Executors can only write to the accumulator.
They cannot read the value of the accumulator.

The value of an accumulator can be read by the
driver only.

 54

Accumulators

Example

// define an accumulator

val counter = sc.longAccumulator("counter")

// sum the contents of a list

sc.parallelize(1 to 9).foreach(x => counter.add(x))

 55

DATAFRAMES

 56

Why DataFrames ?

From Apache Spark documentation:

“A DataFrame is a dataset organized into named
columns. It is conceptually equivalent to a table in
a relational database or a data frame in R/Python,
but with richer optimizations under the hood.”

Important: DataFrames are structured!

 57

Using DataFrames

import org.apache.spark.sql.SparkSession

val spark_session = SparkSession
 .builder()
 .appName("Spark SQL basic example")
 .config("spark.some.config.option", "some-value")
 .getOrCreate()

// For implicit conversions like converting RDDs to DataFrames
import spark.implicits._

 58

Using DataFrames

// Create a DataFrame drom a json file

val df = spark_session.read.json("examples/src/main/resources/people.json")

// Create a DataFrame from a csv file

val df = spark_session.read.option("header", "false").csv("reviews.csv")

// Show the first few lines of the DataFrame

df.show()

// Print the schema of the DataFrame

df.printSchema()

 59

Using DataFrames

// Selection operation
val resdf = df.select($"name", $"age" + 1)

// SQL query passed as a string

val resdf = spark_session.sql("SELECT name, age FROM
people WHERE age BETWEEN 13 AND 19")

 60

Spark Simple Examples

Spark supports
 Java
 R
 Python
 Scala

We are going to use the Scala API in this lecture. We will play with
Spark Core component and also run examples of MLlib and
GraphX libraries that are very relevant to Graph Data Mining.

Also, some Python examples will be discussed.

 61

 64

WordCount
import org.apache.spark.SparkContext._

import org.apache.spark.{SparkConf, SparkContext}

object WordCount {

 def main(args: Array[String]): Unit = {

 val sparkConf = new SparkConf().setMaster("local[2]").setAppName("WordCount")

 val sc = new SparkContext(sparkConf) // create spark context

 val inputFile = "hdfs://myhdfs/leonardo.txt"

 val outputDir = "hdfs://myhdfs/output"

 val txtFile = sc.textFile(inputFile)

 txtFile.flatMap(line => line.split(" ")) // split each line based on spaces

 .map(word => (word,1)) // map each word into a word,1 pair

 .reduceByKey(_+_) // reduce

 .saveAsTextFile(outputDir) // save the output

 sc.stop()

 }

}

 65

WordCount in Hadoop
import java.io.IOException;

import java.util.*;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.conf.*;

import org.apache.hadoop.io.*;

import org.apache.hadoop.mapreduce.*;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

public class WordCount {

 public static class Map extends Mapper<LongWritable, Text, Text,
IntWritable> {

 private final static IntWritable one = new IntWritable(1);

 private Text word = new Text();

 public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {

 String line = value.toString();

 StringTokenizer tokenizer = new StringTokenizer(line);

 while (tokenizer.hasMoreTokens()) {

 word.set(tokenizer.nextToken());

 context.write(word, one);

 }

 }

 }

 public static class Reduce extends Reducer<Text, IntWritable, Text,
IntWritable> {

 public void reduce(Text key, Iterable<IntWritable> values, Context
context)

 throws IOException, InterruptedException {

 int sum = 0;

 for (IntWritable val : values) {

 sum += val.get();

 }

 context.write(key, new IntWritable(sum));

 }

 }

 public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();
 Job job = new Job(conf, "wordcount");
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);
 job.setMapperClass(Map.class);
 job.setReducerClass(Reduce.class);
 job.setInputFormatClass(TextInputFormat.class);
 job.setOutputFormatClass(TextOutputFormat.class);

 FileInputFormat.addInputPath(job, new Path(args[0]));
 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 job.waitForCompletion(true);

 }

}

 66

PageRank
object PageRank {

 def main(args: Array[String]) {

 val iters = 10 // number of iterations for pagerank computation

 val currentDir = System.getProperty("user.dir") // get the current directory

 val inputFile = "file://" + currentDir + "/webgraph.txt"

 val outputDir = "file://" + currentDir + "/output"

 val sparkConf = new SparkConf().setAppName("PageRank")

 val sc = new SparkContext(sparkConf)

 val lines = sc.textFile(inputFile, 1)

 val links = lines.map { s => val parts = s.split("\\s+")(parts(0), parts(1))}.distinct().groupByKey().cache()

 var ranks = links.mapValues(v => 1.0)

 for (i <- 1 to iters) {

 println("Iteration: " + i)

 val contribs = links.join(ranks).values.flatMap{ case (urls, rank) => val size = urls.size urls.map(url =>
(url, rank / size)) }

 ranks = contribs.reduceByKey(_ + _).mapValues(0.15 + 0.85 * _)

 }

 val output = ranks.collect()

 output.foreach(tup => println(tup._1 + " has rank: " + tup._2 + "."))

 sc.stop()

 }

}

 67

More on MLlib

MLlib provides some additional data types common in
Machine Learning

Vector (a math vector, either sparse or dense)

LabeledPoint (useful in classification and regression)

Rating (useful in recommendation algorithms)

Several Models (used in training algorithms)

 68

SVD with MLlib

import org.apache.spark.mllib.linalg.Matrix

import org.apache.spark.mllib.linalg.distributed.RowMatrix

import
org.apache.spark.mllib.linalg.SingularValueDecomposition

val mat: RowMatrix = ...

// Compute the top 20 singular values and corresponding singular vectors.

val svd: SingularValueDecomposition[RowMatrix, Matrix] =
mat.computeSVD(20, computeU = true)

val U: RowMatrix = svd.U // The U factor is a RowMatrix.

val s: Vector = svd.s // The singular values are stored in a local dense vector.

val V: Matrix = svd.V // The V factor is a local dense matrix.

 69

More on GraphX

The basic concept in GraphX is the property graph

The property graph is a directed multigraph with user
defined objects attached to each vertex and edge.

GraphX optimizes the representation of vertex and edge
types when they are plain old data-types (e.g., int)
reducing in memory footprint by storing them in
specialized arrays.

 70

More on GraphX

“While graph-parallel systems are optimized for iterative diffusion algorithms like
PageRank they are not well suited to more basic tasks like constructing the graph,
modifying its structure, or expressing computation that spans multiple graphs”

Source: http://ampcamp.berkeley.edu

 71

More on GraphX

This means that for some tasks Spark may not show
the best performance in comparison to other
dedicated graph processing systems.

Ex:

PageRank on Live-Journal network (available @snap)

GraphLab is 60 times faster than Hadoop

GraphLab is 16 times faster than Spark

 72

More on GraphX

Source: http://spark.apache.org

 73

More on GraphX

To use GraphX we need to import

import org.apache.spark._

import org.apache.spark.graphx._

import org.apache.spark.rdd.RDD

 74

More on GraphX

val vertexArray = Array(

 (1L, ("Alice", 28)),

 (2L, ("Bob", 27)),

 (3L, ("Charlie", 65)),

 (4L, ("David", 42)),

 (5L, ("Ed", 55)),

 (6L, ("Fran", 50))

)

val edgeArray = Array(

 Edge(2L, 1L, 7),

 Edge(2L, 4L, 2),

 Edge(3L, 2L, 4),

 Edge(3L, 6L, 3),

 Edge(4L, 1L, 1),

 Edge(5L, 2L, 2),

 Edge(5L, 3L, 8),

 Edge(5L, 6L, 3)

)

Source: http://ampcamp.berkeley.edu

 75

More on GraphX

Parallelizing nodes and edges

val vertexRDD: RDD[(Long, (String, Int))] =
sc.parallelize(vertexArray)

val edgeRDD: RDD[Edge[Int]] =
sc.parallelize(edgeArray)

Now we have vertexRDD for the nodes and edgeRDD for
the edges.

 76

More on GraphX

Last step: define the graph object

val graph: Graph[(String, Int), Int]
= Graph(vertexRDD, edgeRDD)

 77

PageRank with GraphX
object PageRank {

 def main(args: Array[String]): Unit = {

 val conf = new SparkConf().setAppName("PageRank App")

 val sc = new SparkContext(conf)

 val currentDir = System.getProperty("user.dir")

 val edgeFile = "file://" + currentDir + "/followers.txt"

 val graph = GraphLoader.edgeListFile(sc, edgeFile)

 // run pagerank

 val ranks = graph.pageRank(0.0001).vertices

 println(ranks.collect().mkString("\n")) // print result

 }

}

 78

Connected Components

4

1

2

3

5

7

6

This graph has two connected components:

 cc1 = {1, 2, 4}

 cc2 = {3, 5, 6, 7} Output:
(1,1) (2,1) (4,1)
(3,3) (5,3) (6,3) (7,3)

 79

Connected Components
object ConnectedComponents {

 def main(args: Array[String]): Unit = {

 val conf = new SparkConf().setAppName("ConnectedComponents
App")

 val sc = new SparkContext(conf)

 val currentDir = System.getProperty("user.dir")

 val edgeFile = "file://" + currentDir + "/graph.txt"

 val graph = GraphLoader.edgeListFile(sc, edgeFile)

 // find the connected components

 val cc = graph.connectedComponents().vertices

 println(cc.collect().mkString("\n")) // print the result

 }

}

 80

Counting Triangles

Triangles are very important in Network Analysis:

- dense subgraph mining (communities, trusses)

- triangular connectivity

- network measurements (e.g. clustering coefficient)

a

b d

ec

Example

 81

Counting Triangles
object TriangleCounting {

 def main(args: Array[String]): Unit = {

 val conf = new SparkConf().setAppName("TriangleCounting App")

 val sc = new SparkContext(conf)

 val currentDir = System.getProperty("user.dir")

 val edgeFile = "file://" + currentDir + "/enron.txt"

 val graph = GraphLoader

 .edgeListFile(sc, edgeFile,true)

 .partitionBy(PartitionStrategy.RandomVertexCut)

 // Find number of triangles for each vertex

 val triCounts = graph.triangleCount().vertices

 println(triCounts.collect().mkString("\n"))

 }

}

 82

Spark SQL: planets

We have a JSON file (planets.json) containing
information about the planets of our solar system

{"name":"Mercury","sundist":"57910", "radius":"2440"}
{"name":"Venus", "sundist":"108200", "radius":"6052"}
{"name":"Earth", "sundist":"149600", "radius":"6378"}
{"name":"Mars", "sundist":"227940", "radius":"3397"}
{"name":"Jupiter","sundist":"778330", "radius":"71492"}
{"name":"Saturn", "sundist":"1429400","radius":"60268"}
{"name":"Uranus", "sundist":"2870990","radius":"25559"}
{"name":"Neptune","sundist":"4504300","radius":"24766"}
{"name":"Pluto", "sundist":"5913520","radius":"1150"}

 83

Spark SQL: planets

The JSON schema looks like this:

root

 |-- name: string (nullable = true)

 |-- radius: string (nullable = true)

 |-- sundist: string (nullable =
true)

 84

Spark SQL: planets

We need to do the following:

1. extract the schema from planets.json

2. load the data

3. execute a SQL query

 85

Spark SQL: planets
object Planets {

 def main(args: Array[String]) {

 // Create spark configuration and spark context

 val conf = new SparkConf().setAppName("Planets App")

 val sc = new SparkContext(conf)

 val sqlContext = new org.apache.spark.sql.SQLContext(sc)

 val currentDir = System.getProperty("user.dir") // get the current directory

 val inputFile = "file://" + currentDir + "/planets.json"

 val planets = sqlContext.jsonFile(inputFile)

 planets.printSchema()

 planets.registerTempTable("planets")

 val smallPlanets = sqlContext.sql("SELECT name,sundist,radius FROM planets WHERE radius < 10000")

 smallPlanets.foreach(println)

 sc.stop()

 }

}

 86

Spark SQL: sales

 87

Spark SQL: sales

val basicDF = ss.read.option("header", "true").csv(“sales.csv”)

basicDF.printSchema()

basicDF.show()

 88

Spark SQL: sales
// Define some helpful User-Defined Functions (UDFs)

 val udf_toDouble = udf[Double, String](_.toDouble)

 val udf_toInt = udf[Int, String](_.toInt)

 // Convert columns to the appropriate data type.

 val modifiedDF = basicDF

 .withColumn("Transaction_Date", to_timestamp($"Transaction_Date", "mm/dd/yy HH:mm"))

 .withColumn("Account_Created", to_timestamp($"Account_Created", "mm/dd/yy"))

 .withColumn("Last_Login", to_timestamp($"Last_Login", "mm/dd/yy"))

 .withColumn("Latitude", udf_toDouble($"Latitude"))

 .withColumn("Longitude", udf_toDouble($"Longitude"))

 .withColumn("City", rtrim($"City"))

modifiedDF.printSchema()

modifiedDF.show()

 89

Spark SQL: sales

// Show only LAT-LON of sales.

modifiedDF.select($"Latitude", $"Longitude").show()

// Show number of sales per country and also average price of sold products per
country (use group by).

modifiedDF.groupBy($"Country").agg(count("Transaction_Date"),avg("Price")).s
how()

 // Show number of sales per Country only for VISA payments (use filter).

 modifiedDF.filter($"Payment_Type" ===
"Visa").groupBy($"Country").agg(count("Transaction_Date")).show()

 90

Spark SQL: sales

// First, register the DF as a temporary view with the name "sales".

 modifiedDF.createOrReplaceTempView("sales")

// Now, you can use the sqlContext to run SQL queries, since "sales" is like a dtabase table.

// Get all sales for France.

modifiedDF.sqlContext.sql("SELECT * FROM sales WHERE Country='France'").show()

// Get all pairs of sales using Transaction_Date as the key, to detect pairs of sales that correspond to the

// same price. This is equivalent to a self-join on column "Price".

modifiedDF

 .sqlContext

 .sql("SELECT r.Transaction_Date, s.Transaction_Date FROM sales as r, sales as s WHERE r.Price =
s.Price")

 .show()

Another way to write an SQL query

 91

 92

WordCount in Python
from __future__ import print_function
import sys
from operator import add
from pyspark import SparkContext

if __name__ == "__main__":
 if len(sys.argv) != 2:
 print("Usage: wordcount <file>", file=sys.stderr)
 exit(-1)
 sc = SparkContext(appName="PythonWordCount")
 lines = sc.textFile(sys.argv[1], 10)
 counts = lines.flatMap(lambda x: x.split(' ')) \
 .map(lambda x: (x, 1)) \
 .reduceByKey(add)
 output = counts.collect()
 for (word, count) in output:
 print("%s: %i" % (word, count))

 sc.stop()

 93

from __future__ import print_function

import sys

import numpy as np

from pyspark import SparkContext

from pyspark.mllib.clustering import KMeans

def parseVector(line):

 return np.array([float(x) for x in line.split(' ')])

if __name__ == "__main__":

 if len(sys.argv) != 3:

 print("Usage: kmeans <file> <k>", file=sys.stderr)

 exit(-1)

 sc = SparkContext(appName="KMeans")

 lines = sc.textFile(sys.argv[1], 10)

 data = lines.map(parseVector)

 k = int(sys.argv[2])

 model = KMeans.train(data, k)

 print("Final centers: " + str(model.clusterCenters))

 print("Total Cost: " + str(model.computeCost(data)))

 sc.stop()

kMeans in Python

 94

Some Spark Users

 95

Resources

The best way to begin learning Spark is to study the
material at Spark's official website

 https://spark.apache.org

From this website you have access to Spark
Summits and other events which contain useful
video lectures for all Spark components.

 96

Spark Books

Books to learn Spark

 97

Useful MOOCs

Coursera (www.coursera.org):

Introduction to Big Data

Big Data Analysis with Scala and Spark

Data Manipulation at Scale, Systems and Algorithms

edX (www.edx.org):

Introduction to Apache Spark

Distributed Machine Learning with Apache Spark

Big Data Analysis with Apache Spark

https://spark.apache.org/

 98

Dataset Download

Where to find more graph data ?

Take a look at
http://snap.stanford.edu

 99

Thank you

Questions ?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99

