
Workflow Optimization for Big 
Data Analytics

An overview of  the Data Flow Optimization problem and solutions

Informatics Department
Aristotle University of Thessaloniki

September 2018
1

Dr. Georgia Kougka
Post-doc



Data-Centric Flows (1/2)

o Workflow definition: a sequence of tasks to be executed to solve a problem or realize a process.

o Flow Representation: Directed Acyclic Graph G=(T,E)

o Vertices → flow tasks

o Each workflow is characterized by its

• control flow, and

• data flow aspects/properties.

o Control flow properties:  define the co-ordination of tasks, how they are triggered, etc.

o Workflow for data analysis or simply a data flow is a type of workflow, where the tasks retrieve,
manipulate, process or output data.

Tasks

t1

t2

t3

t4

t5 t6 t7

T = {t1, …, tn}

2



Data-Centric Flows (2/2)

o Workflow definition: a sequence of tasks to be executed to solve a problem or realize a 
process.

o Flow Representation: Directed Acyclic Graph G=(T,E)

o Vertices → flow tasks

o Workflow for data analysis or simply a data flow is a type of data flow, where the tasks 
retrieve, manipulate, process or output data.

o Graph Edges in data flows→ transfer data between the tasks.

o Each task may be executed when the total size of data or only a subset of the data is available.

t1

t2

t3

t4

t5
t6 t7

Edges

edge1

T = {t1, …, tn}
E = {e1, …, ene}

3



Data Flow Example
o Encountered in both business and scientific

scenarios.

o Extend traditional Extract – Transform – Load 
(ETL) flows.

o Part of Big Data Analysis.

o May include complex analysis tasks.

oModern data flows:
➢are complex
➢operate in highly dynamic environment 
➢their execution order and other 

execution details are defined manually

➢Consequently, manually designed flows are 
very prone to suboptimality

4



Data Flow Optimization (1/2)
oQuery Optimization VS Flow Optimization: 

i. Possible arbitrary dependencies  among 
their execution order,

ii. Tasks do not belong necessarily to an 
algebra with clear semantics→ black box, 
e.g. UDFs, and

iii. Other optimization criteria than 
performance, such as reliability.

o Architecture of Workflow Management System 
(WfMS):

Presentation: User Interface

User Services: Monitoring, Provenance

WEP generation: Optimization, 
Parallelization

WEP execution: Task Execution, 
Scheduling, Fault Tolerance

Infrastructure: Interface

Workflow
Execution
Plan

5



Data Flow Optimization (2/2)
oQuery Optimization VS Flow Optimization: 

i. Possible arbitrary dependencies  among 
their execution order,

ii. Tasks do not belong necessarily to an 
algebra with clear semantics→ black box, 
e.g. UDFs, and

iii. Other optimization criteria than 
performance, such as reliability.

oOptimization Dimensions:
➢High Level or Logical flow plan execution

➢Low Level or Physical flow plan execution

o Architecture of Workflow Management System 
(WfMS):

Presentation: User Interface

User Services: Monitoring, Provenance

WEP generation: Optimization, 
Parallelization

WEP execution: Task Execution, 
Scheduling, Fault Tolerance

Infrastructure: Interface

Workflow
Execution
Plan

6



A Taxonomy of 
Data-centric Flow Optimization

7



Logical Flow Optimization 
Mechanisms (1/2)

8



Logical Flow Optimization 
Mechanisms (2/2)

9



Physical Flow Optimization 
Mechanisms (1/2)

10



Physical Flow Optimization 
Mechanisms (2/2)

11



Task Ordering Mechanism

• Why task re-ordering matters?

12



Data Flow Metadata

oQualitative Metadata
➢Dependencies

oQuantitative Metadata
➢Vertex Cost: time cost (ci) that a task requires to process one data tuple

➢Edge Cost: cost associated with edges, such as data transmission cost 
between tasks.

➢Selectivity: the (average) ratio of the output to the input data size of a task 
(seli)

13



Dependency Graph (1/3)

o Precedence Constraints or
Dependencies

o Dependencies on the valid edges 
of graph G

o Graphs G and PC are not 
semantically equivalent

o Non-executable flow 
representation

o Partial order representation of the 
tasks, not the exact execution 
order

o Dependency Graph (DAG): PC (T,D)

t1

t2

t3

t4

t5
t6 t7

T = {t1, …, tn}
D = {d1, …, dl}

l ordered pairs
di={tj, tk}

14



Dependency Graph (2/3)

o Execution Plan (DAG): G=(T,E) o Dependency Graph (DAG): PC
(T,D)

t1

t2

t3

t4

t5
t6 t7

T = {t1, …, tn}
D = {d1, …, dl}

t1

t2

t3

t4

t5
t6 t7

edge1

15

DoF = 1 −
2∗l

𝑛 𝑛−1
= 1 −

2∗16

7 7−1
= 1 − 0,76 = 0,24

0,24 DoF
or

76% Dependency Constraints

n = 7
l = 16

Degree 

of  

Freedom



Dependency Graph (3/3)

o Execution Plan (DAG): G=(T,E) o Dependency Graph (DAG): PC
(T,D)

t1

t2

t3

t4

t5
t6 t7

T = {t1, …, tn}
D = {d1, …, dl}

t1

t2

t3

t4

t5
t6 t7

edge1

16

DoF = 1 −
2∗l

𝑛 𝑛−1
= 1 −

2∗16

7 7−1
= 1 − 0,76 = 0,24

0,24 DoF
or

76% Dependency Constraints

n = 7
l = 16

Degree 

of  

Freedom



Logical Flow Optimization: 
Task Ordering (1/4)

oDecompose workflows in linear 
sub-flows/segments

oOptimization of linear sub-flows:
➢Preserving the dependency 

constraints, is a necessary and 
sufficient condition for generating a 
valid execution plan.

17

t1

t3

t2 t4

t5

PC

Valid Linear Data Flow

t1 t3
t2 t4 t5

oProblem definition (Objective function):
Minimize the sum of the costs of all tasks (flow execution cost) of a 
data flow (Sum Cost Metric Minimization)



Logical Flow Optimization: 
Task Ordering (2/4)

oDecompose workflows in linear 
sub-flows/segments

oOptimization of linear sub-flows:
➢Preserving the dependency 

constraints, is a necessary and 
sufficient condition for generating a 
valid execution plan.

18

t1

t3

t2 t4

t5

PC

Valid Linear Data Flow

t1 t3
t2 t4 t5

oProblem definition (Objective function):
Minimize the sum of the costs of all tasks (flow execution cost) of a 
data flow (Sum Cost Metric Minimization)

Resource 
Consumption 



Logical Flow Optimization: 
Task Ordering (3/4)

oDecompose workflows in linear 
sub-flows/segments

oOptimization of linear sub-flows:
➢Preserving the dependency 

constraints, is a necessary and 
sufficient condition for generating a 
valid execution plan.

19

t1

t3

t2 t4

t5

PC

Valid Linear Data Flow

t1 t3
t2 t4 t5

oProblem definition (Objective function):
Minimize the sum of the costs of all tasks (flow execution cost) of a 
data flow (Sum Cost Metric Minimization)

Represents the 
flow execution 

time under 
conditions

Resource 
Consumption 



Logical Flow Optimization: 
Task Ordering (4/4)

oDecompose workflows in linear 
sub-flows/segments

oOptimization of linear sub-flows:
➢Preserving the dependency 

constraints, is a necessary and 
sufficient condition for generating a 
valid execution plan.

20

t1

t3

t2 t4

t5

PC

Valid Linear Data Flow

t1 t3
t2 t4 t5

oProblem definition (Objective function):
Minimize the sum of the costs of all tasks (flow execution cost) of a 
data flow (Sum Cost Metric Minimization)

Represents the 
flow execution 

time under 
conditions

Resource 
Consumption 

ΝP-hard problem that 
cannot be 

approximated with a 
small constant.



Benefits of Task Ordering Mechanism

o Up to 3 times cost improvement.

o 90%-95% dependencies→ 10-15% cost 
improvement

Flow examples with a small number of tasks and 
high percentage of dependencies

o TPC-DI benchmark, where linear flows with
<20 tasks and 85-95+% constraints

o In such scenarios, accurate algorithms can still 
be applicable:
➢ Dynamic Programming (DP)

➢ Finding Optimal Topological Sorting (TopSort)

21

100 

random

flows

n=15

ci ∈ 1,100
seli = ∈ (0,2]

20-95% 

dependency 

constraints



Dynamic Programming Algorithm

✓Accurate for linear data flows

✓Creates an execution plan based on optimal subsets of a flow

✓Calculates the cost of task subsets of size n based on subsets of size n-1

✓e.g. subsets {t1}, {t2}, {t3}, {t1, t2}, …., {t1 , t2 , … , tn}

✓Time Complexity: O(n22n)

22



Dynamic Programming Algorithm

5

10

10

15

…

12

…

25

…

17

…

➢E.g. for subset size 2, subset {4 5}:
4 – 5 valid order
5 – 4 invalid order because of dependencies

1. Position estimation of subsets {4} and
{5}:
pos(4)=24-1=23=8
pos(5)=25-1=24=16
pos(4-5)= pos(4)+ pos(5)=8+16=24

2. Cost and selectivity estimation of {4 5}
Costs(24)= Costs(8)+ Sel(8)* Costs(16)

= 12+0,2*25=17
Sel(24)=Sel(8)*Sel(16)=0,2*0,5=0,1

23

Costs

0,5

0,2

0,1

0,3

…

0,2

…

0,5

…

0,1

…

Sel

1

2

1 2

…

…

4

…

5

…

4 5

…

partialPlan

4 5

3 5

… …

Subsets of different sizes
(2-n)

3 4 5

2 4 5

… … …

… … … …

… … … …

… … … …

1:

2:

3:

4:

8:

16:

24:

i=13

(1101)2

t1, t3, t4 partialPlan: 1 4 3



Topological Sorting Algorithm

✓Exhaustive production of all the topological sortings.

✓Time Complexity: O(n!).  Despite the complexity, in practice is applicable for 
many scenarios.

✓Produces the execution plan from the previous one, ensuring the dependency 
constraints.

✓Each plan is based on the previous one, with the minimal amount of changes.

✓Two main operations: Rotation or Swap

24



Evaluation (1/2)

oExperimental Environment
➢Synthetic Data Flows

oAlgorithm Comparison
➢Backtracking (best of State of the Art)→ cannot scale for flows with high 

percentage of dependencies. Worst case: O(n!)

➢DP → cannot scale for execution plans with high number of operators.

➢Compare TopSort to each algorithm individually.

25



Evaluation (2/2)

26

DP >3 days

for n=20

TopSort

50 times faster

PC=98%

e.g. TPC-

DI

n=60

1 min

Backtracking orders 

of  magnitudes 

slower

n=30

Backtracking 459 secs

TopSort 13 secs



Conclusions

o TopSort algorithm has better performance for linear flows.

o Topological sorting on a previous sorting, with the minimal amount of changes.

o Exploiting dependency constraints

o Applicability:
➢TopSort: 60 tasks and 98% constraints→ improvement in 1 minute
➢TopSort: 15 tasks and 30% constraints→ improvement in < 1 minute
➢Best of State-of-the-Art: 35 times slower, in scenarios that is applicable
➢Best of State-of-the-Art: inapplicable for low percentage of dependency constraints

o Despite the performance improvements, the accurate techniques cannot scale.

27



Rank Ordering Algorithm

oDemanding need to adopt innovative algorithms that scale for linear 
flows.

oRank Ordering algorithm in abstract level
1. Pre-processing phase: Modify PC graph 

2. Apply the modified KBZ algorithm: Generation of the execution plan

3. Post-process phase: Improve the G graph

28



RO-I Algorithm (1/2)

29

➢ Pre-processing phase: convert the 
PC graph to a tree

➢ rank=(1-seli)/ci



RO-I Algorithm (2/2)

30

➢ Generation of temporarily non-
valid plans

➢ Corrections with post-process 
phase

➢ Time complexity: O(n2)



RO-II Algorithm

31

➢ Valid plan generation, but with 
more restrictions

➢ Post-process procedure is not 
necessary

➢ Time complexity: O(n2)



RO-III Algorithm

32

➢ RO-I and RO-II deviates from the optimal 
solution

➢ Valid plan generation, but with more 
restrictions

➢ Post-process procedure for further 
improvement

➢ Checks all the possible re-orderings of 
each sub-flow of size from 1 to k from 
the left to the right

➢ Time complexity of the phase: O(kn2)



Important Observations

➢The RO-I and RO-II outweigh the techniques of the state-of-the-art.

➢There is no one superior.

➢The RO-III is better than RO-II, because it extends it.

33



Experimental Evaluation (1/2)

oExperiments in a real execution environment Pentaho Data 
Integration (PDI) for 100.000 records:

34

Performance 
improvement 

(average value)
DoF=0,4 → 30,3%
DoF=0,6 → 47,8%

n = 30

alg\DoF 0,2 0,4 0,6 0,8

PM-based 1,84 2,41 4,77 2,06

Swap 1,84 3,30 3,62 1,39

ci ∈ 𝟏, 𝟏𝟎𝟎
seli = ∈ (𝟎, 𝟐]

Speed-up =
𝑺𝑪𝑴(𝑩)

𝑺𝑪𝑴(𝑨)

Maximum speed-up of RO-III



Experimental Evaluation (2/2)

• Experiments with synthetic data flows

35

Degree-Of-
Freedom 
(DoF): 0,4

RO-III 3 times better for n= 100
in average



Non-linear Data Flows

oNon-linear flow plan generation for optimization
oMerge cost of the input data: merge cost (mc)
oProcess phase of a linear flow plan:

➢Execution of successive tasks with sel>1, while the dependency constraints are 
preserved

oTime Complexity: O(n2)

36



MIMO Workflows

oMultiple Input Multiple Output (MIMO)

37

Start from an initial valid plan:
Step 1: Extract linear sub-flows
Step 2: Optimization of the 
linear sub-flows based on RO-III
Step 3: Re-ordering checking
between binary and unary
operators
Step 4: Repeat the above steps 
until no changes



Data Flows SIMO and MISO (1/2)

• Multiple Input Single Output (MISO) Case

38



Data Flows SIMO and MISO (2/2)

• Single Input Multiple Output (SIMO) Case 

39



Experimental Evaluation

o10 sub-flows with: 
➢10 tasks (flow with 100 tasks)
➢20 tasks (flow with 200 tasks)

oDoF linear subset 0.6

oFor subset of size 10:
➢Up to 86% improvement (PRO-III)

oFor subset of size 20:
➢3.8 times improvement (PRO-III)

➢62% PRO-III better than Swap

➢55% PRO-III better than PM-based

40



Engine Selection Mechanism (1/3)

41

oFlow with 14 tasks

oPossible allocation of tasks to engines:
➢2635=15.552

➢Increases exponentially in the number of 
available candidate engines

➢mn : possible allocations, where the m is the 
number of the execution engines

oData transfer/ switching between 
different engines→ possible extra cost

oExecution engine constraints



oProblem: Allocating flow activities to specific heterogeneous and 
independent execution engines

oProblem challenges:
➢The problem is NP-hard.

➢The number of flow nodes and candidate execution engines may be 
large.

➢Execution engines are heterogeneous.

➢Shipping data and engine switching incurs extra cost (this makes the 
problem NP-hard).

42

Engine Selection Mechanism (2/3)



oOptimization Objective→minimize the sum of all the costs of each 
task on the engines that has been allocated (flow execution cost) + the 
cost of data shipping between different engines and engine switching 

oIn general, flow task allocation to execution engines in order to:
i. minimize the total execution cost,

ii. each task is allocated to a single execution engine and

iii. the allocations algorithms are executed in a couple of seconds

43

Engine Selection Mechanism (3/3)



Metadata

oValid logical execution plan

oSet of execution engines that activities can be allocated to (m size)

oExecution cost of a task when mapped to an execution engine ej (ci,j):
➢possibility of different task implementations for each execution engine
➢time units
➢different for each execution engine or different engine configurations

oGraph/Flow edge cost (𝑐𝑒𝑒𝑖→𝑗
𝑡
𝑘 ) or inter-engine cost:

i. cost of engine switching from an engine ei to ej

ii. data transfer from the output of task tk to a subsequent task
iii. no cost for data transfer between tasks allocated to the same execution engine

oExecution engine constraints

44



Simple Heuristics

oH1:
➢rank all engines based on their 

average execution cost for all flow 
activities in increasing order

➢allocate each task to the engine with 
the lowest cost that is capable of
executing that activity

oH2: 
➢rank all engines based on their 

execution cost for each flow activity 
separately

➢allocate each task to the engine with 
the lowest cost that is capable of 
executing that activity

45



Anytime Algorithms (1/3)

oBranch and Bound-Iteration Capping (BB-IC) Algorithm
➢calculates the flow execution cost after each task gets allocated

➢if the cost exceeds the current minimum cost up to this time (between H1 and
H2) or violates the engine selection constraints

➢this intermediate allocation plan is abandoned

➢e.g. if the 3rd task allocation to 4th engine is invalid, then we do not examine 
the allocations based on this mapping

➢exponential complexity

➢cap the number of the allowed iterations (allows only a prespecified number 
of iterations)☺

➢investigate other allocations for the parts of the flow that contribute the most 
to the total cost☺

46



Anytime Algorithms (2/3)

oRandom-walk (RWR-b): 
➢starting from the allocation derived from the best performing heuristic 

between H1 and H2

➢random perturbations for a pre-specified number of times (r)

➢re-starting point is the best performing allocation detected thus far

oRWR-b and BB-IC :
➢explore only a very small part of the search space

➢e.g. BB-IC for 10,000 number of iterations and n=m=100 checks only the
possible change of 2 tasks

➢propose algorithms in order to prune the search space: set-cover algorithms

47



Anytime Algorithms (3/3)

oSet Cover (SC1 και SC2) Algorithms
• SC1: (i) reduces the total number of candidate execution engines ENG

(ii) selects the engine that is capable of processing the most activities

• SC2: (i) 1st task allocation, similar to SC1 

(ii) chooses the engine with the lowest average inter-engine cost with

respect to the last added engine across all activities

• Apply both BB-IC and RWR-b to the reduced engine set

oThe maximum number of iterations in the pre-processing phase: m

oThe number of iterations or restarts of BB-IC and RWR-b define the 
actual execution time of SC flavors

48



Hybrid Solutions

oA hybrid solution (BEST): metaheuristic algorithm that chooses the 
allocation plan with the lowest execution cost among BB-IC, RWR-b, 
SC1 and SC2.

oPerformance increase up to 10%

oDynamic Programming Algorithm
➢Optimal Solution for linear flows

➢Approximate solution for general flow plans

49



Experimental Evaluation (1/3)

50

n = m = 100



Experimental Evaluation (2/3)

51

n=10 n=20

n=50 n=100

n=200

Dense flows

n=50: BEST is 70% better
n=100: BEST is 45% better
n=200: BEST is 33% better



Execution Engine Configuration (1/3)

• Running a Spark application on all the available processors:
➢does not necessarily imply lower running time
➢may entail waste of resources
➢leads to lower performance due to sub-optimal partitioning

• Propose novel algorithms for configuring dynamic partitioning 

• Optimization aim: minimize the resource consumption under the 
constraint that running time does not increase more than a user-
defined threshold

53



Motivation Example

• RDD initially partitioned across 96 
nodes

• The degree of 
partitioning/parallelism (DoP) in 
each stage group remains the 
same.

• Fixed DoP at 96 nodes → occupied 
for 920 secs

• After repartitioning → 950 secs
!!!BUT for 450 secs only 32 machines 
occupied 

• rc drops by 29.9%

54

rc = 920 × 96 = 88320

rc = 500 × 96 + 450 × 32 = 62400



Execution Engine Configuration (2/3)

oSelect the optimal degree of parallelism for each task
oConsidering both the resource consumption and running time

oMassive Parallel Execution Environments, such as SPARK

oDegree of Parallelism→ execution engine

oModifying the degree of parallelism→ extra cost

55



Execution Engine Configuration (3/3)

oFind the optimal degree of parallelism in linear SPARK flows

oOptimization Objective: Minimization of response time resource 
consumption

oDP: 
➢5% response time improvement compared to the response time has degree 

of parallelism one

➢25% resource consumption minimization

56



Summary

oDP outweighs for flows with linear flow subsets.

oDP is optimal for linear flows

oOptimization of data flows with very high number of tasks

oCost improvement up to 7 times for linear (DP), 4.68 times for dense 
and 3.5 for sparse (BEST) flows.

oOptimization in less than 1 second.

57



Data Flow Execution (1/2)

• Many tasks are executed in parallel
➢Employ the three main forms of parallelism: 

1. Partitioned
2. Pipelined
3. Independent

➢Time overlapping and interplay between the constituent tasks in a flow.
➢Execution time overlaps → Not all the task executions contribute to the 

overall running time

• Multiple tasks share the same computation resources

• Concurrent execution of the tasks using same resource pool has impact on the 
task execution cost.

• Existing cost models may not capture the real execution time.

58



Data Flow Execution (2/2)

59



Existing Cost Models

• Up to date no cost model estimates the response time (wallclock time) accurately in 
modern systems.

• Cost-models are important: they are embedded in cost-based optimizers.

• Optimization solutions employ simple cost models, e.g. cost-based task ordering. I.e., 
bad models → bad optimizations

• Rely on the metadata of each task

• Example of inadequacy:
• When summing the task costs, the cost model considers  the flow resource consumption, which is 

different from flow running time

• Main observations:
➢ Execution cost computation deviates from real execution time
➢Optimizations may not be reflected on response time.

• Need for advanced cost model!!!

60



Cost Models and Metrics
• Cost metrics for which good optimization solutions already exist:
❑Sum Cost Metric of Full plan (SCM-F)
❑Sum Cost Metric of Critical Path (SCM-CP)
❑Bottleneck
❑Throughput (cannot capture response time)

• How these metrics can define response time?
❑SCM-F→ tasks of a flow executed sequentially or when tasks are pipelined 

but on the same processor
❑SCM-CP→ flow branches executed independently and tasks of each branch 

executed sequentially
❑Bottleneck→ tasks executed in a pipelined manner on different processors

61



Why do we need a new cost model?

• Modern platforms (e.g. Kettle, SPARK) employ pipelined parallelism 
on multiple processors.
➢SCM-F and SCM-CP cannot capture response time

➢Bottleneck is not appropriate→ pipelined tasks are executed on the same 
processor + blocking tasks (e.g. sort operators)

• A new cost model that considers:
➢all the types of parallelism

➢the corresponding overlaps during task execution

➢the resource contention and benefits due to sharing resources

62



Response Time Modeling

o Extra execution cost because of multithreading

oMultithreading overhead factors:
o context switching between threads (concurrent execution)

o locks for restricting the access of tasks to a specific engine or core

o contention for using shared resources (α factor)

• Up to 60% deviation of response 
time estimation, if we won’t 
consider (through a variable) the 
above factors.

• => Considering time overlaps is not 
enough!

63



What is Business Intelligence?

• The process of transforming the business data into knowledge using 
techniques enabling the users to take effective fact based decisions.

64

Information/Knowledge



Business Intelligence

• Businesses need to manage data assets, as they represent the 
physical world.

• BI can manage enormous structured/unstructured data to identify or 
create business opportunities.

• BI is characterized by three aspects: 
i. Precise and concise interpretation  of large volume data

ii. Identifying new opportunities

iii. Implementing an effective solution to be competitive.

65



Why do we need BI?

• Nowadays global competition is growing and businesses need to 
answer challenging questions: 
✓How can I improve my business performance?

✓How can I ensure Quality of Service?

✓What would be my insightful decision based on ocean of data? 

✓How quick can I take decisions based on that enormous data? (End-to-End BI 
Solution)

✓How can I integrate heterogeneous data and import to a common framework 
to analyze it further?

66



Pentaho Data Integration

• PDI (Community Edition) began as an open source project, named KETTLE 
(Kettle Extraction Transformation Transport Load Environment).

• PDI Architecture → Spoon

• Spoon is the graphical design interface for designing ETL jobs and 
transformations.

• Create complex ETL jobs without writing much of code.

• Edit, execute or debug a transformation or job.

• Set up remote PDI servers to coordinate jobs across a collection of 
clustered machines and execute jobs within a cluster of Carte cluster 
nodes.

67



Jobs vs Transformations

❑Transformations:  
✓moving and transforming rows from source to target

✓Steps can be executed in parallel

❑Jobs:
✓ consider the high level flow control: executing transformations, sending mails 

on failure, etc.

✓Steps executed only in order (single-thread execution)

68



Steps

• Building blocks of a transformation.

• Example: A text file input or output.

• Designed  to perform a specific task, such as reading data, filtering 
rows and logging to a database.

• Configured to perform the tasks we aim to design.

69



Hops

• Connect the steps and allow 
schema metadata to pass from one 
step to another.

• Do not necessarily express a 
sequential execution.

• Determine the flow of the data 
through the steps, not necessarily 
the sequence in which they are 
executed.

• When a transformation is running, 
each step instantiates its own 
thread, pushes and passes data.

• All steps can be executed in 
parallel, so the initialization is not 
predictable.

70



Pentaho Examples (demo)

• How can we create a transformation/job?

• Add a sequence – Basic example 

• Twitter – Product campaign

71



Business Process Optimization

• Borrow lessons from the data management community for Business 
Process Optimization (BPO).

• Automated cost-based optimization of performance of BPMN processes:

1. BPMN challenge to automate production of executable 
workflow/process execution.

2. Less burden for workflow designers.

3. Flexibility and resilience.

4. Performance benefits.

72



A BPMN example

73



Mapping BPs to DAGs

74

Map BPMN diagrams to DAGs amenable 
to cost-based optimizations.



Review of the 
Workflow Optimization research area

oNeed for holistic solutions

oCommon evaluation approach

oEmbedding optimization algorithms in WfMS

oOnly a few proposals considering the edge cost

oOptimization of multiple flows simultaneously

oStatistical metadata collection (early stage of research)

oExisting model costs fail to reflect the response time of the parallel 
task execution

oEnd-to-End Business Process Optimization Solutions

75



Related Work (1/2)

➢Georgia Kougka, and Anastasios Gounaris: "Cost-based optimization of data 
flows based on task re-ordering", Transactions on Large-Scale Data- and 
Knowledge-Centered Systems (TLDKS), 2017.
➢Georgia Kougka, and Anastasios Gounaris: " Optimal Task Ordering in Chain 

Data flows: Exploring the Practicality of non-Scalable Solutions'', Proceedings 
19th International Conference on Data Warehousing and Knowledge 
Discovery (DaWaK), 2017.
➢Georgia Kougka, and Anastasios Gounaris: "Optimization of Data-intensive 

Flows: Is it Needed? Is it Solved?", Proceedings of the 17th International 
Workshop on Data Warehousing and OLAP (DOLAP), 2014.
➢Georgia Kougka, and  Anastasios Gounaris: " Declarative expression and 

optimization of data-intensive flows", Proceedings 19th International 
Conference on Data Warehousing and Knowledge Discovery (DaWaK), 2013.

76



Related Work (2/2)

➢Georgia Kougka, Anastasios Gounaris, and Kostas Tsichlas: "Practical 
algorithms for execution engine selection in data flows", Future Generation 
Computer Systems (Elsevier), 2015.

➢Anastasios Gounaris, Georgia Kougka, Ruben Tous, IEEE Transactions on 
Parallel and Distributed Systems (TPDS), 2017.

➢Georgia Kougka, Anastasios Gounaris, and Ulf Leser: ''Modeling Data Flow 
Execution in a Parallel Environment'', Proceedings 19th International 
Conference on Data Warehousing and Knowledge Discovery (DaWaK), 2017.

➢Georgia Kougka, Anastasios Gounaris, and Alkis Simitsis: ''The Many Faces of 
Data-centric Workflow Optimization: A Survey‘’, (to appear).

77



Thank you!!!

78


