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Uniform coordinates

Sample each coordinate and normalize is too naive.



Unit Simplex

Distinct uniform variables

1. Pick uniform distinct integers; then sort:
X():OSX] < o< Xg < X441 =M.
2. Point [y; = (xi —xi_1)/M : i=1,...,d] is uniform.
Complexity = O(dlog d) [Smith, Tromble'04].
Fastest for d < 80 using Bloom filter (rather than hashing).

Exponential random variables

1. Pick uniform x; € (0,1); set y; = —Inxi, i=1,...,d+ 1.
2. Let T = Z?ﬂ] yi, then [y /T, ...,yq/T] is uniform.

Complexity = O(d) [Rubinstein,Melamed'98].

Arbitrary with vertices vi: X € unit simplex, Zl 1 Xivi is uniform.
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Uniformly distributed points

> rejection shall not work: exponentially many points in
bounding cube / simplex but outside P.
Curse of dimensionality.

» for arbitrary polytopes we need random walks

e.g. grid walk, ball walk, shake-and-bake, hit-and-run.




Random Directions Hit-and-Run (RDHR)

P Input: point x € P and polytope P C R¢
Output: a new point in P
1. line £ through x, uniform on B(x, 1)

‘ 2. x is uniformly disrtibuted on PN {

Perform W steps, return x.




Random Directions Hit-and-Run (RDHR)

P Input: point x € P and polytope P C R¢
Output: a new point in P
1. line £ through x, uniform on B(x, 1)
2. x is uniformly disrtibuted on PN ¢
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Random Directions Hit-and-Run (RDHR)

Input: point x € P and polytope P C R¢
Output: a new point in P
1. line £ through x, uniform on B(x, 1)
2. x is uniformly disrtibuted on PN ¢

Perform W steps, return x.

» x ~ uniformly distributed in P after W = O*(d?) steps [LV'06]



Coordinate Directions Hit-and-Run (CDHR)

P Input: point x € P.
Output: a new point in P.
1. line £ through x, uniform on
{e1y...,eal, ei=(...,0,1,0,...)
2. x uniformly € PN {.




Coordinate Directions Hit-and-Run (CDHR)

p ! Input: point x € P.

Output: a new point in P.
1. line £ through x, uniform on
{e1y...,eal, ei=(...,0,1,0,...)
2. x uniformly € PN {.




Coordinate Directions Hit-and-Run (CDHR)

Input: point x € P.

. Output: a new point in P.
1. line £ through x, uniform on

2. x uniformly € PN L.

Perform W steps, return x.

“Continuous” grid walk: Converges to uniform, unknown mixing

{e1,...,ed}, ei:(...,0,1,0,...
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The problem

Input: H-polytope P:={x e R4 | Ax < b, A € R™*4 b ¢ R™}
Output: Euclidean volume of P.

» #-P hard for vertex, halfspace representations [Dyer,Frieze'88]

A V-polytope is defined by vertices v1,...,v, € R%:
Pi={Avi+ -+ AV ERY[ A+ + Ay = 1,7 >0}



Approximation

Given an H-polytope in RY:
> no deterministic poly-time approximation has less than
exponential error [Elekes'86]; error < d! [Betke,Henk'93]

» randomized poly-time approximation with high probability,
arbitrarily small error (fully polynomial-time randomized
approximation scheme - FPRAS), sampling and ball sequence
[DFKannan'91] in O*(d%3).

» Hit-and-Run sampling [KanLovSimon'97].

» O*(d*m) [Lovész,Vempala'06] by simulated annealing
(adaptive sequence); if rounded O*(d*m) [CousinsV'14].
Recently O*(d?m?) [Lee,Vempala'17].



Implementations

Exact: do not scale to dimension > 15

Randomized:
» [Lovédsz,Dedk’12] only in < 10 dimensions.
» Matlab code by Cousins & Vempala based on [LV06]
» VolEsti: based on Sampling [E-Fisikopoulos]

» Hit-and-run in non-convex regions [Abbasi-Yadkori et al.'17]



Multiphase Monte Carlo (sequence of balls) @mym
PPT IS,

» Cocentric balls B(c,2Y4),
i=|dlogr|,...,[dlogp],
B(c,r) C P < B(c,p).

» Pi:=PNB(c,2"Y).
Fraction of number of points in P;

over that in P;_; approximates ratio
of volumes: vol(P;)/vol(Pi_7) > 1.

[dlogp]

vol(P) = vol(Pg4i1og+) H
i=|dlogr]|+1

vol(P;)

volPLy) [DFK91]



Sandwiching

» compute max inscribed ball B(c,r) of P, by LP:
maXTiAiX-i-T”AiH < bi, i= 1,...,TT1

» compute a uniformly distributed p € B(c,r); hit-and-run
generates N uniform points € P

» p = max distance between ¢ and N points: P € B(c, p)



Rounding (to isotropic position)

1. given set S of s uniformly distributed points € P

2. compute (approximate) min-volume ellipsoid E covering S:
E/(1+e)dCCH(S) CE={x:(x—¢c)TLTL(x—c) <1}
3. compute L mapping E to unit ball B: apply L to P

Iterate till ratio of max over min ellipsoid axis reaches threshold:
Efficiently handles skinny polytopes in practice.



Complexity

Theorem (Kannan,Lovasz,Simonovits'97; Lovasz'99)

Let B(c,r=1) C P C B(c,p). The algorithm computes, with
probability > 3/4, an estimate in [(1 — €)vol(P), (1 + €)vol(P)], by

O*(d4p2) _ O*(ds)

oracle calls with probability > 9/10, where p = O*(\/d) by
isotropic sandwiching, and € > 0 is fixed.

Runtime

» N =400e2dlog d random points per P;
» each point computed after W ~ 10" d3 walk steps



[E-Fisikopoulos]

» coordinate (vs. random) directions hit-and-run (CDHR):
boundary oracle in O(m).

» Set W = |10+ d/10| random walk steps, also in [LovDeak]:
achieves < 1% error in up to 100 dim, vs. ~ 10"1d3 steps.
Hence our algorithm takes O*(md?) ops.

» sample partial generations of < N points per ball NP, starting
from largest; saves constant fraction per ball.

» rounding in O*(sd?) = O*(d?) [Khachiyan'96]; k iterations in
O*(k(md + d3)), typically k = 1.



VolEsti software

v

github.com/vissarion/volume_approximation
C++, 2.5K lines
CGAL for LP, min-ellipsoid; Eigen for linear algebra

v

v

v

Google summer of code 2018: R interface.


github.com/vissarion/volume_approximation

Experimental results

» approximate the volume of polytopes (cubes, random, cross,
birkhoff) up to dimension 100 in < 2hrs with mean error < 1%

v

estimate always in [(1 — €)vol(P), (1 + €)vol(P)], for given €,
d <100 (vs prob. 3/4 [KLS'97]), with W = ©(d)

v

CDHR faster and more accurate than RDHR

v

Matlab code [CousinsVempala]: competitive in high dim



Runtime vs. dimension
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Performance on Bs
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Birkhoff polytopes

._.
cwoo~No o~ 3

11
12
13
14
15

Bn :{X € Rmxm ‘ Xij > 0) Zixi]' = ]) Z] Xiyj = 1) 1< ‘L)J < Tl}:
perfect matchings of Ky, 5, or Newton polytope of determinant.

d estimate asymptotic  estimate exact _exact
[CanfieldMcKay09] ~ asympt. asympt.

9 6.79E-002 7.61E-002  0.89194 6.21E-002 0.81593
16 1.41E-004 1.69E-004 0.83444 1.41E-004 0.83419
25  7.41E-009 8.62E-009  0.85987 7.35E-009  0.85279
36 5.67E-015 6.51E-015 0.87139 5.64E-015 0.86651
49 4.39E-023 5.03E-023  0.87295 4.42E-023 0.87786
64 2.62E-033 2.93E-033  0.89608 2.60E-033 0.88741
81 8.14E-046 9.81E-046  0.83052 8.78E-046  0.89555
100 1.40E-060 1.49E-060  0.93426 ? ?
121  7.85E-078 8.38E-078  0.93705 ? ?
144 1.33E-097 1.43E-097  0.93315 ? ?
169 5.96E-120 6.24E-120  0.95501 ? ?
196 5.70E-145 5.94E-145  0.95938 ? ?

All volumes in few hrs; exact V(B1o) in ~1 year [BeckPixton03].
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Ellipsoid

Need to generalize:

» Boundary oracle: solve univariate quadratic equation.
» Compute internal point, inscribed ball, enclosing ball.

» Define sequence of concentric balls: Stop when all rays first
hit the inscribed ball.

This, financial application in [Calés-Chalkis-E-Fisikopoulos,
SoCG'18]



Internal point

» Transform ellipsoid to sphere Hy, transform simplex similarly.

» Find B(p,r) of max radius , satisfying constraints:
dist(p, Hi) > 1 & alp +bi > rlail,

dist(p, Ho) > 1 & [|p — col| < 1o — .
This is a Second Order Cone Program. In general, polytope
intersection with O(1) balls.

» Solved by SDP / interior-point method in poly-time.

» Inverse transform yields inscribed ellipsoid, maybe not max.
Center is good internal point.

» Get max inscribed ball by taking distance of p to Hj's.



Non-convex nonlinear bodies

Two concentric ellipsoids intersect simplex.

» Hit-n-Run: ray may not intersect ellipsoid iff quadratic
equation yields only complex solutions.

» Sample simplex until interior point found. Define
€-Chebyshev-ball. Enclosing ball contains a point sample.

» Decreasing ball sequence stops when rays first hit e-ball.
Experimental Results:
» Works for d < 35 with same walk-length, #sample points.

» Runtime / accuracy competitive to convex region defined by
one ellipsoid.

» Open for d > 35: fails to approximate volume in most cases
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Financial markets

Stock markets exhibit 3 types of behavior:
» Normal: slightly positive returns, moderate volatility.
» Up-market (bubbles): high returns, low volatility.

» Crises: strongly negative returns, high volatility.
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The copula is a volatility-return probability distribution.
Figure: up-market and crisis: bubble burst in Sep. 2000.



Financial modeling

v

Portfolios of d + 1 assets represented by simplex A4 ¢ R4+,

For portfolio w € A4, returns R € R4, total return
f(w,R) = RTw is linear combination of returns.

v

Cross-sectional score of portfolio w* is vol(A*)/vol(A9) s.t.

v

A* ={w e AY : f(w,R) < f(w*, R)}.

Score corresponds to cumulative distribution of f(w, C).

v

Volatility is quadratic form of returns.



Families of constraints

» Let Ry; be the return at day i of asset j. Consider compound
returns over k days starting at day i: define (d + 1)-vector v
whose j-th coordinate, j = 1,...,d + 1, equals

Vi = (14 R) (1 + Rigaj) - (T 4+ Ripe—r ) — 1.

Normal vector v defines family of hyperplanes.

» Volatility requires estimation of the returns’ variance —
covariance matrix, yielding concentric ellipsoids.

» Copula populated by intersecting A4 along asset
characteristics: Hyperplane families normal to two compound
vectors, or to one vector and concentric ellipsoids.



Formula for single halfspace

Let H:a™x < ag, a = (aj,...,aq), let S be the unit simplex.
1. Letyi=a;—apif >0,i=1,...,K,
xi=aq—q if<0,i=1,...,],st. J+K=d.
2. Initialize Ag =1,A1 =--- =Ax =0.
3. Forj=1,...,] do:

- YAk — XAk
Yk — %

Ax k=1,...,K.

Forj =17,
Ax =vol(SNH)/vol(S).

Complexity = O(d?) [Varsi'73,Ali'73,Gerber'81].



Simple polytopes

Simple P; c € R4, q € R s.t. ¢'x + g not constant on any edge.
For vertex v, A¥ = d x d matrix: columns are hyperplanes by v.

Let v¥ s.t. AYyY =, then

(c'v+q)¢
vol(P
d' Z |detAv| H1 ]Yl

Complexity ~ d3 #vertices [Lawrence'91], using V-rep, H-rep.
Open: pick ¢ to avoid c'x 4 q being nearly constant on edge:
causes instability. Thus use exact operations for d > 30.



Constant number of hyperplanes

Unit simplex intersected by sufficiently generic hyperplanes =
simple polytope; constant h = #hyperplanes = formula in O(d?):

“Worst-case” vertex belongs to h hyperplanes ) ; CijXj = Cip,
2> ixi=1,and d —h —1 hyperplanes x; = 0; up to permutation:

1 T e+ o

AV

Y

1 cia - Cha

Linear solve = O(d), det AY in O(1), #vertices = O(d?).
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Polytope Oracles

Membership oracle
Given point y € RY, return yes if y € P otherwise return no.

Boundary oracle
Given y € P, ray { through y, return points £ N 9P.



Approximation

Given is polytope P C RY and approximation parameter € € (0, 1):

Definition (Approximate Polytope Membership)

Preprocess P into data-structure so that, given query point (,
decide whether g € P or not. If d(q,0P) < e - diam(P) the data
structure can answer either way.

Definition (Approximate Polytope Boundary)

Preprocess P into data-structure so that given query ray v
emanating from y € P, compute point ¥, s.t.

™ € rand d(r*,0P) < e - diam(P).

Previous approaches have complexity exponential in d.



Reduction

Exact setting [Aurenhammer'87]

Let P C RY have n facets. Vp* € P\ OP, compute set S of n
points: membership of g reduces to finding its Nearest Neighbor in

Suip*}

Let P ¢ ={x € P|d(x,0P) > e-diam(P)} # 0.

Approximate Membership reduces to eANN on S U {p*}, p* € P¢.

Theorem (Complexity)

We answer Approximate Membership queries in O*(dnP+el1)),
using O* (n'*+°*+°0) 1 dn) space, whp, where p < 1/(1+4¢€?) < 1.

[Anagnostopoulos-E-Fisikopoulos'17]



Approximate Boundary Oracle

1. Compute t; ¢ P, t; € , where 1 is ray shooting query.
2. For t; & P, iteratively compute ti1 closer to apex:

> Let p; be nearest neighbor of t;.
» Let H; be hyperplane supporting facet F; defining p;.
» Then ti .1 =HiNr.

3. Terminate by checking (approximate) membership oracle.

Approximate version may get stuck in local “optimum”: If t; does
not decrease distance to apex, set
ti := (ti—1 — r.apex) — r.unitdir - e.



Membership experiments, and Outlook

Approximate Boundary similarly fast but inaccurate.

Application: Polytope sampling, Volume P

estimation in d > 600 for (non)convex .
(non)linear bodies: various applications, e.g.
financial modeling
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VolEsti 2018

» VolEsti is a C++ library for sampling and volume
approximation of convex bodies (e.g. polytopes) with an R
interface [Chalkis].

> VolEsti can be used to
(a) generate some well known polytopes (cubes, simplices,
cross-polytopes, zonotopes),

(b) compute approximation of volumes,
(c) sample from convex polytopes approximating uniform or
spherical gaussian distribution.



Installation

> Get the R interface of VolEsti at
https://github.com/TolisChal/volume_
approximation/tree/volesti_tutorial

» Download the zipfile from github and extract it locally.
» Open with Rstudio file volesti.Rproj in folder /R-proj.

» At the Build menu, click "build source Package”, then click
"Build and Reload”.

» More instructions in instructions.txt in folder /R-proj.


https://github.com/TolisChal/volume_approximation/tree/volesti_tutorial
https://github.com/TolisChal/volume_approximation/tree/volesti_tutorial

Examples

1. Generate a d-dimensional cube in H-rep:
> cube = GenCube(d, 'H’)

2. Sample 1000 points in cube using CDHR, W = |10+ 10/d]:
> P = sample_points(A = cube$A,b = cube$b, N = 1000)

3. Approximate the volume of cube using RDHR, W = 20,
> vol = volume(A = cube$A,b = cube$b, walk _length =
20, coordinate = FALSE)

More examples in instructions.txt in folder /R-proj.



Tests

» Test Coordinate Directions Hit-and-Run vs d. Consider a
constant number of sampled points N for a family of
polytopes (e.g. d-dim cubes). Check runtime as d increases.

> Test CDHR efficiency vs N. Fix d and vary N.

» Compare CDHR with Random Directions Hit-and-run: For a
family of polytopes, run both schemes and compare runtimes.

» Test volume approximation: For a family of polytopes, run
CDHR as N, d vary: check accuracy vs runtime.

» Compare CDHR with RDHR on volume: For a family of
polytopes, run both and compare volumes and runtimes.

Set flag verbose=TRUE.



Peacock test

> |t generalizes, for 2d and 3d samples, the Kolmogorov-Smirnov
test, a non-parametric test for comparing two samples.

» The null hypothesis (output 0) is that the two samples are
drawn from the same distribution, otherwise the test returns
(close to) 1.

» To install package Peacock.test, run in Rstudio:
> install.packages("Peacock.test")
> library("Peacock.test") #activation

» Peacock.test offers functions peacock2(x,y) and
peacock3(x,y), for 2d and 3d samples: x,y are N x d
matrices.



Test samples

1. Use sample_simplex() to sample N=100 uniform points
from the 3-dimensional simplex.
Use GenSimplex() to generate a 3d simplex, and
sample_points() to sample N=100 points using CDHR.
How is the value of the Peacock test varying with
walk_length?

2. Construct a 2d skinny simplex (triangle) and use
sample_simplex() to sample uniform points.
Repeat (1) with N=100 by passing skinny simplex to
sample_points().

Solutions in sampling tutorial.R.
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Test skinny polytopes

From sampling tutorial.R.

V = matrix(c(0,0,0,7,100,0),ncol = 2, nrow = 3, byrow = TRUE)
yields #V-rep of 2d skinny simplex.

A = matrix(c(-1,0,0,—1,0.07,1),ncol = 2, nrow = 3, byrow = TRU

yields #H-rep of skinny cube.

samplel = sample_simplex(vertices=V, N=100)
sample2 = sample_points(A=A,b=c(0,0,7),N=100,walk_length=1)
or: sample2=sample_points(V=V,N=100,walk_length=1)
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