
Algorithms in Data science
Tree-based data structures

Ioannis Emiris
http://erga.di.uoa.gr

Dept Informatics & Telecoms, National Kapodistrian U. Athens
ATHENA Research & Innovation Center, Greece

INRIA Sophia-Antipolis France

cHiPSet, Thessaloniki, 19 September 2018

I.Emiris (Athens, Greece) Algorithms in Data science

cHiPSet, Thessaloniki, 19 September 2018[6mm] 1

/ 33



Contents

1 Low dimension

2 General dimension
Approximate nearest neighbor
kd-trees
Randomized kd-trees

I.Emiris (Athens, Greece) Algorithms in Data science

cHiPSet, Thessaloniki, 19 September 2018[6mm] 2

/ 33



Motivation: retrieval and clustering

1. Rotamers by χ samples

2. Steric clashes, then final

Related issue: Representation (possibly by neural networks).

I.Emiris (Athens, Greece) Algorithms in Data science

cHiPSet, Thessaloniki, 19 September 2018[6mm] 3

/ 33



Motivation: one-dimensional objects

I.Emiris (Athens, Greece) Algorithms in Data science

cHiPSet, Thessaloniki, 19 September 2018[6mm] 4

/ 33



Outline

1 Low dimension

2 General dimension
Approximate nearest neighbor
kd-trees
Randomized kd-trees

I.Emiris (Athens, Greece) Algorithms in Data science

cHiPSet, Thessaloniki, 19 September 2018[6mm] 5

/ 33



Range query in 3 dimensions

date of birth

salary

3000

4000

19500000 19559999

2

4

chlidren

I.Emiris (Athens, Greece) Algorithms in Data science

cHiPSet, Thessaloniki, 19 September 2018[6mm] 6

/ 33



kd-Trees in the plane

Problem

Preprocess points P = {p1, p2, . . . , pn} ⊂ R2, to answer queries efficiently:
Which points lie inside a query rectangle [x : x ′]× [y : y ′]?
p = (px , py ) lies in the rectangle iff px ∈ [x , x ′] & py ∈ [y , y ′].

kd-trees

Generalize BBST: they split current pointset at median value, but use
different coordinate at each level.

Left subtree contains half (or one less) points with smaller coordinate and
point with median value.

Points shall correspond to leaves (and plane regions).

I.Emiris (Athens, Greece) Algorithms in Data science

cHiPSet, Thessaloniki, 19 September 2018[6mm] 7

/ 33



The way the plane is subdivided

l1

l2
l3

l4

l5

l6

l7

l9

p1
p2

p3

p4

p5

p6

p7

p8

p9

p10

l8

I.Emiris (Athens, Greece) Algorithms in Data science

cHiPSet, Thessaloniki, 19 September 2018[6mm] 8

/ 33



The way the plane is subdivided

l1
p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

I.Emiris (Athens, Greece) Algorithms in Data science

cHiPSet, Thessaloniki, 19 September 2018[6mm] 8

/ 33



The way the plane is subdivided

l1

l2

p1
p2

p3

p4

p5

p6

p7

p8

p9

p10

I.Emiris (Athens, Greece) Algorithms in Data science

cHiPSet, Thessaloniki, 19 September 2018[6mm] 8

/ 33



The way the plane is subdivided

l1

l2
l3

p1
p2

p3

p4

p5

p6

p7

p8

p9

p10

I.Emiris (Athens, Greece) Algorithms in Data science

cHiPSet, Thessaloniki, 19 September 2018[6mm] 8

/ 33



The way the plane is subdivided

l1

l2
l3

l4

p1
p2

p3

p4

p5

p6

p7

p8

p9

p10

I.Emiris (Athens, Greece) Algorithms in Data science

cHiPSet, Thessaloniki, 19 September 2018[6mm] 8

/ 33



The way the plane is subdivided

l1

l2
l3

l4

l5
p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

I.Emiris (Athens, Greece) Algorithms in Data science

cHiPSet, Thessaloniki, 19 September 2018[6mm] 8

/ 33



The way the plane is subdivided

l1

l2
l3

l4

l5

l6

p1
p2

p3

p4

p5

p6

p7

p8

p9

p10

I.Emiris (Athens, Greece) Algorithms in Data science

cHiPSet, Thessaloniki, 19 September 2018[6mm] 8

/ 33



The way the plane is subdivided

l1

l2
l3

l4

l5

l6

l7
p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

I.Emiris (Athens, Greece) Algorithms in Data science

cHiPSet, Thessaloniki, 19 September 2018[6mm] 8

/ 33



The way the plane is subdivided

l1

l2
l3

l4

l5

l6

l7
p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

l8

I.Emiris (Athens, Greece) Algorithms in Data science

cHiPSet, Thessaloniki, 19 September 2018[6mm] 8

/ 33



The way the plane is subdivided

l1

l2
l3

l4

l5

l6

l7
p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

l8
l9

I.Emiris (Athens, Greece) Algorithms in Data science

cHiPSet, Thessaloniki, 19 September 2018[6mm] 8

/ 33



The corresponding binary tree

p5 p4

l4

p2

l5

p10

l6

l2 l3

p9

l1

p3 p1

p2

l5

p3 p1

l8 p2

l5

p3 p1

l9p7

l7

p6 p8

I.Emiris (Athens, Greece) Algorithms in Data science

cHiPSet, Thessaloniki, 19 September 2018[6mm] 9

/ 33



Building time and storage

Remarks

Split at the n
2 -th smallest (median) coordinate: O(n) time,

or preprocess by sorting both on x- and y -coordinates.

The building time satisfies the recurrence:

T (n) =

{
O(1) if n = 1
O(n) + 2T (n2 ) if n > 1

T (n) = O(n log n) which subsumes sorting.

O(n) storage: points stored at leaves, leaf contains ≥ 1 points
(alternatively stored at internal/splitting nodes).

I.Emiris (Athens, Greece) Algorithms in Data science

cHiPSet, Thessaloniki, 19 September 2018[6mm] 10

/ 33



Regions and the query algorithm

Internal nodes of a kd-tree correspond to rectangular regions of the
plane: can be unbounded on one or more sides.

Regions of all nodes at a specific level partition the plane.

region(root(T )) is the whole plane.

Point stored at (leaf of) subtree rooted at v iff it lies in region(v)

Search the subtree of v only if the query rectangle intersects
region(v).

I.Emiris (Athens, Greece) Algorithms in Data science

cHiPSet, Thessaloniki, 19 September 2018[6mm] 11

/ 33



Range query on a kd-tree

l1

l2
l3

l4

l5

l6

l7
p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

l8
l9

p5 p4

l4 l5

p10

l6

l2 l3

p9

l1

p1

l5

p1

l8 p2

l5

p3 p1

l9p7

l7

p6 p8

p2

p3

I.Emiris (Athens, Greece) Algorithms in Data science

cHiPSet, Thessaloniki, 19 September 2018[6mm] 12

/ 33



Query time analysis

The number of intersected regions (by vertical line) in a kd-tree
storing n points, satisfies the recurrence:

Q(n) =

{
O(1) if n = 1
2 + 2Q(n4 ) if n > 1

Q(n) = O(
√
n)⇒ time = O(

√
n + k) for rectangular query

General d : Space = O(n), Query = O(d · n1−1/d).

The analysis is rather pessimistic: In many practical situations the
query range is small and will intersect much fewer regions.

I.Emiris (Athens, Greece) Algorithms in Data science

cHiPSet, Thessaloniki, 19 September 2018[6mm] 13

/ 33



Outline

1 Low dimension

2 General dimension
Approximate nearest neighbor
kd-trees
Randomized kd-trees

I.Emiris (Athens, Greece) Algorithms in Data science

cHiPSet, Thessaloniki, 19 September 2018[6mm] 14

/ 33



Introduction

Given a distance function/metric:

Preprocess: set of points/objects P = {p1, . . . , pn} in d dimensions.

Query: Given a d-dimensional query point/object q, report the closest
p ∈ P to q.

I.Emiris (Athens, Greece) Algorithms in Data science

cHiPSet, Thessaloniki, 19 September 2018[6mm] 15

/ 33



Several applications

Pattern Recognition and Classification

I.Emiris (Athens, Greece) Algorithms in Data science

cHiPSet, Thessaloniki, 19 September 2018[6mm] 16

/ 33



Several applications

Searching multimedia databases.

I.Emiris (Athens, Greece) Algorithms in Data science

cHiPSet, Thessaloniki, 19 September 2018[6mm] 17

/ 33



NN in R, R2

1D: Sort/store the n points, use binary search for queries, then:

Prepreprocessing in O(n log n) time

Data structure requiring O(n) space

Answer the query in O(log n) time

2D:

Preprocessing: Voronoi Diagram in O(n log n).

Storage = O(n).

Given query q, find the cell it belongs (point location) in O(log n).
NN = site of cell containing q.

I.Emiris (Athens, Greece) Algorithms in Data science

cHiPSet, Thessaloniki, 19 September 2018[6mm] 18

/ 33



Exact NN in Rd

Is it faster than linear-time?

Curse of Dimensionality:

Complexity of Voronoi diagram grows rapidly = O(ndd/2e).

Planar point location methods do not extend to higher dimensions.

The volume of the space increases so fast that data becomes sparse

State of the art: kd-trees: Sp = O(n), Query = O(d · n1−1/d).
Most practical for d � log n: O(log n) expected for “random” points

I.Emiris (Athens, Greece) Algorithms in Data science

cHiPSet, Thessaloniki, 19 September 2018[6mm] 19

/ 33



Outline

1 Low dimension

2 General dimension
Approximate nearest neighbor
kd-trees
Randomized kd-trees

I.Emiris (Athens, Greece) Algorithms in Data science

cHiPSet, Thessaloniki, 19 September 2018[6mm] 20

/ 33



Nearest Neighbor in high dimension

Exact NN

Given set P in d dimensions, and query point q, its NN is point p0 ∈ P:

dist(p0, q) ≤dist(p, q), ∀p ∈ P.

Approximate NN

Given set P in d dimensions, approximation factor 1 > ε > 0, and query
point q, an ε-NN, or ANN, is any point p0 ∈ P:

dist(p0, q) ≤ (1 + ε) dist(p, q), ∀p ∈ P.

•

•

•

•

•

• •

•

•
q

•
NN

•
x∗1

•
x∗2

r
(1 + ε)r

I.Emiris (Athens, Greece) Algorithms in Data science

cHiPSet, Thessaloniki, 19 September 2018[6mm] 21

/ 33



Approximate NN in Rd

BBD tree [Arya,Mount et al.98]: optimal
query for d = O(1). In practice like kd-trees:

cgal offers “lazy” kd-trees
ann [Mount] for d ≤ 60
flann [Lowe-Muja], kd-geraf [E-Samaras]: randomized

Locality sensitive hashing (LSH) for ε-NN
Sp = O(dn1+ρ), Q = O(dnρ), ρ = 1/(1 + ε)2.
[Indyk,Motwani’98] [Panigrahy’06] [Andoni,Indyk’06]

Dimensionality reduction [Anagnostopoulos,E,Psarros’15’17]
Sp = O∗(dn), Q = O∗(dnρ), ρ = 1 + ε2/ log ε < 1

I.Emiris (Athens, Greece) Algorithms in Data science

cHiPSet, Thessaloniki, 19 September 2018[6mm] 22

/ 33



Outline

1 Low dimension

2 General dimension
Approximate nearest neighbor
kd-trees
Randomized kd-trees

I.Emiris (Athens, Greece) Algorithms in Data science

cHiPSet, Thessaloniki, 19 September 2018[6mm] 23

/ 33



kd-trees

Assuming d > 2 but small.

Iterate through splitting coordinates; various strategies to pick them

Leaves contain ≥ 1 points; bound #levels.

I.Emiris (Athens, Greece) Algorithms in Data science

cHiPSet, Thessaloniki, 19 September 2018[6mm] 24

/ 33



Complexity

Sp = O(d · n).

construction of balanced tree: O(d · n log n) by sorting per dimension,
O(n log n) by linear-time median computation.

(Few) Insert/delete operations in balanced kd-tree = O(log n)

Exact Range query = O(d · n1−1/d + k).

In practice, ANN ' O(log n) when d = O(1), since O(1) expected
neighbors for random (e.g. uniform) distribution. See also BBD-trees:
O((d/ε)d log n).

I.Emiris (Athens, Greece) Algorithms in Data science

cHiPSet, Thessaloniki, 19 September 2018[6mm] 25

/ 33



Outline

1 Low dimension

2 General dimension
Approximate nearest neighbor
kd-trees
Randomized kd-trees

I.Emiris (Athens, Greece) Algorithms in Data science

cHiPSet, Thessaloniki, 19 September 2018[6mm] 26

/ 33



Randomization

Construct:

Create r kd-trees s.t. searches are largely independent.

Find O(1) coord’s maximizing variance: Pick one randomly

May sample the data; split it about the mean of the sample.

Use bounded #levels; bucket contain several points.

Principal Component Analysis finds moment axes: rotate to align
them with the coordinte axes. Or, random rotation.

Search:

Upper bound on total #nodes to be searched.

Priority queue stores candidates across r trees.

Similar effect to r lower-dim projection [Silpa-Anan,Hartley’08]

I.Emiris (Athens, Greece) Algorithms in Data science

cHiPSet, Thessaloniki, 19 September 2018[6mm] 27

/ 33



FLANN: Fast Library for ANN

Typically r ≤ 6 independent trees.

Target d = 128, n > 104 (SIFT encoding of images).

Given data: Automatic choice of configuration,
and algorithm (Randomized kd-trees, Hierarchical k-means trees)

[Lowe:IJCV04], software [Lowe,Muja]

I.Emiris (Athens, Greece) Algorithms in Data science

cHiPSet, Thessaloniki, 19 September 2018[6mm] 28

/ 33



kd-GeRaF

Implement k-ANN

Simultaneous search, no backtracking.

Quickselect algorithm to find median in O(n)

Accelerated distance computations (dot product, see below)

Public domain C++: https://github.com/gsamaras/kd_GeRaF

(WebApp: 195.134.67.90:8080)

[Avrithis,E,Samaras’15]

I.Emiris (Athens, Greece) Algorithms in Data science

cHiPSet, Thessaloniki, 19 September 2018[6mm] 29

/ 33

https://github.com/gsamaras/kd_GeRaF


Randomization

Rotation
Every tree uses a randomly rotated pointset, thus using a
different set of dimensions/coordinates.

Split dimension
Pick t dimensions of highest variance. Choose one randomly
at every node while building the tree.

Split Value
The pointset’s median in split dimension plus uniformly
distributed δ ∈ [−3∆√

d
, 3∆√

d
], ∆ = diameter of pointset.

Shuffling
The split value may be witnessed in several points, instead of
picking always the same point, shuffle them to break ties.

I.Emiris (Athens, Greece) Algorithms in Data science

cHiPSet, Thessaloniki, 19 September 2018[6mm] 30

/ 33



Implementation

Search

Descend every tree to leaf, store unvisited branch nodes in
min-priority queue Q.

Examine nodes in Q, until c/1 + ε leaves are checked.

On descending a tree:
– at leaf: update currently best distance.
– at node: if query in the left half-space: insert right child to Q,
descend to left child; or vice versa.

Distance computation

‖x − q‖2 = ‖x‖2 + ‖q‖2 − 2q · x , where the first two can be stored.
Offers up to 10% speedup.

Project idea: ‖x − q‖2 − ‖y − q‖2 reduces to 2q · (y − x).

I.Emiris (Athens, Greece) Algorithms in Data science

cHiPSet, Thessaloniki, 19 September 2018[6mm] 31

/ 33



Experiments

Faster than ann/bbd, flann for d ≥ 1, 000 (up to 10,000), n ≤ 106.

(i) SIFT images: n = 106, d = 128, BBD out of memory.
GIST: d = 960 (ii) n = 105 (iii) n = 106, query < 1s, 90% exact.

I.Emiris (Athens, Greece) Algorithms in Data science

cHiPSet, Thessaloniki, 19 September 2018[6mm] 32

/ 33



Experiments on Oxford set, CroW features (neural nets)

n = 5062 images, d = 512.
Brute force: 5.22 sec. Build takes 2 sec for kd-Geraf.

points per leaf trees no t max leaf check miss(%) time(ms)

1 1 4 2 4 0.2
1 1 4 4 0 0.3
1 4 4 4 0 0.5

Search with ”Noisy” queries.

points per leaf trees no t max leaf check miss(%) time(s)

16 8 32 32 3.6 0.01
16 32 64 64 0 0.03
16 64 64 4 0 0.02

Search with Oxford queries.

I.Emiris (Athens, Greece) Algorithms in Data science

cHiPSet, Thessaloniki, 19 September 2018[6mm] 33

/ 33


	Low dimension
	General dimension
	Approximate nearest neighbor
	kd-trees
	Randomized kd-trees


