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Clustering

Definition (k clusters)

Given n objects, and k > 1, partition the objects into k subsets (clusters)
so as to optimize some objective function.

Objects in the same cluster are more “similar” (or closer) to each
other than to those in other clusters.

Possible criteria: minimizing the total distance among all cluster
points, minimizing the distance of cluster points to some center, etc.

Variations: k is unknown and computed, e.g., by the Silhouette
method. Capacitated/balanced: k given, clusters of equal cardinality.

Applications: Classification, Social Network Analysis, Recommender
Systems, Market Research, Bioinformatics etc
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Good Clustering, with centers
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Approaches

hierarchical (agglomerative): each point initializes a cluster, merge
closest clusters, until stopping criterion (e.g., predetermined number
of clusters), or if closest pair too far apart.

point-assignment: given some initial clusters, assign points to “best”
cluster, update cluster representative/centroid; example: k-means (our
focus). Might allow combining / splitting clusters, or unassign points.

[Ullman et al:Mining Massive datasets]
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Vector spaces

Problem definition

Clustering that minimizes objective function.

k is given.

Centroids do not have to be part of the dataset

k-means

k-means is the most common problem: Main algorithms:
– Lloyd’s algorithm is standard.
– Elkan’s uses triangular inequality to accelerate updates.

Also used to construct initial clusters for more sophisticated method.

In Euclidean space, assignment is point location to k Voronoi cells.
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k-means: Objective function

Typical ambient space is Rd but can generalize to metric space D.

Minimization function

In any metric space D with distance metric d, let the dataset be
P = {x1, . . . , xn} ⊆ P ⊆ D, k > 1. Given centroids C ⊂ D, let

d(xi ,C ) = min
c∈C

d(xi , c).

Take vector v(C ) = (d(x1,C ), . . . ,d(xn,C )). The k-means objective is:

min
C⊆D,|C |=k

‖v(C )‖22 =
n∑

i=1

d(xi ,C )2.

The k-means objective is NP-hard, but for the `2 metric, Lloyd’s algorithm
converges quickly to a local minimum.
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Variations

Various minimizations

Recall P = {xi}, v(C ) = (d(x1,C ), . . . ,d(xn,C )), where C ⊂ D are the
centroids, and the k-means objective is:

min
C⊆D,|C |=k

‖v(C )‖22 =
n∑

i=1

d(xi ,C )2.

Similar objectives:
– k-median: minC⊆D,|C |=k ‖v(C )‖1,
– k-medoid: minC⊆P,|C |=k ‖v(C )‖1.
– k-center: minC⊆P,|C |=k ‖v(C )‖∞,
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Lloyd’s

Algorithm

Initialize k centers randomly (or using some strategy).

1 Assignment: Assign each object pi to its nearest center.

2 Update: Mean 1
T

∑T
i=1 pi of each cluster becomes new center.

Repeat the two steps until there is no change in the assignments.

Properties

Each distance calculation = O(d) add/mul, because vectors in Rd .

Assignment = O(nkd) add/mul, Update = O(nd) add.

#iterations unknown, in practice � n.

Converges to local minimum in Euclidean space (depends heavily on
initialization).
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Initialization
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Lloyd’s 1
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Lloyd’s 2
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Lloyd’s 3
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Lloyd’s 4
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Final
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Properties

Bottleneck of Lloyd’s is assignment (distances).
Use the Triangle inequalities to reduce distance calculations.

Lemma (Triangular)

If center c is updated to c ′ then:
|d(x , c)− d(c , c ′)| ≤ d(x , c ′) ≤ d(x , c) + d(c , c ′).

Lemma

For centers a, b, and point x : d(x , a) ≤ d(a, b)/2⇒ d(x , a) ≤ d(x , b).

Corollary: x shall not be assigned to b.
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Maintain bounds

Initialisation

Pick initial centers c and assign each x to closest center c(x).

Set u(x)← d(x , c(x)): upper bound to own center;
l(x , c)← min{d(x , c) : c 6= c(x)}: lower bound to other centers.

Update bounds

Compute d(ci , cj) for all centers ci 6= cj .

Update x ’s bound to its new center c ′: u(x)← u(x) + d(c , c ′).

Update when c changes to c ′: l(x , c ′)← |l(x , c)− d(c , c ′)|.
These bounds follow from the triangular inequalities.
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Elkan’s Assignment

for each point x do
if u(x) ≤ d(c(x), c ′)/2, for all centers c ′ 6= c(x) then Skip x ;

continue
end if
for each c ′ to which x is not assigned do

if u(x) not opt, compute u(x)← d(x , c(x)); mark u(x) as opt;
if u(x) ≤ d(c , c ′)/2, or u(x) ≤ l(x , c ′) then Skip c ′; continue
end if
compute d(x , c ′);
if d(x , c ′) < u(x) then assign x to c ′; set u(x)← d(x , c ′)
else update l(x , c ′)← d(x , c ′);
end if

end for
end for
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Elkan’s algorithm

Elkan’s algorithm, compared to Lloyd’s,
– offers large experimental speedup,
– yields same output, same convergence,
– requires much higher storage.

We later propose a method to accelerate updates based on range search.
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k-medoids

Goal: Handle any distance metric; k-means only if mean defined.
k-medoids (PAM is simplest algorithm) use centroids belonging to dataset

Definition (Medoid)

The medoid of a set is the object of the set that minimizes total
dissimilarity (sum of distances) to all other objects in the set.

Objective function: minC⊆P,|C |=k ‖(d(x1,C ), . . . ,d(xn,C ))‖1.

vs k-means

– k-means tends to select convex spherical clusters; k-medoids less so.
– k-means is more sensitive to noisy data and outliers.
– k-means is faster and easier to implement.

[Kaufman-Rousseeuw’87]
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Partitioning Around Medoids (PAM)

Initialize k centroids randomly (or using some strategy).

1 Assignment of each object to nearest centroid; compute objective

2 Update:

for each centroid m do
for each non-centroid t do

Swap m and t, compute new objective function value.
end for

end for
Keep configuration (centroids) with min objective value.

Repeat steps 1 and 2 until there is no change of configuration (centroids).

Distance calculation := O(d ′). Suppose update of objective
= O((n − k)d ′), by comparing only 2nd best centroid, which is assumed
known. Hence, update = O((n − k)2kd ′) ∼ n2d ′.
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Update of Objective cost function

Objective function: J =
n−k∑
i=1

dist(i , c(i)), c(i) = centroid of i ’s cluster.

∀i store 2nd best centroid c ′. Centroid m replaced by non-centroid t:

For i in m’s cluster, i.e. c(i) = m,

∆J =


dist(i , t)− dist(i ,m), if dist(i , t) ≤ dist(i , c ′) : do nothing

dist(i , c ′)− dist(i ,m), if dist(i , t) > dist(i , c ′) :

assign i to c ′, update i ’s 2nd best centroid.

For i in other cluster, i.e. c(i) 6= m,

∆J =

{
0, if dist(i , t) ≥ dist(i , c(i)) : do nothing

dist(i , t)− dist(i , c(i)) if dist(i , t) < dist(i , c(i)) : assign i to t
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Accelerating updates

Two faster updates, which may however lose accuracy compared to PAM.
Recall that after every swap we assume J computed in O((n − k)d ′).

1. Basic improvement

Instead of swapping centroid m with every point t, swap m only with every
non-centroid in same cluster as m.

Hence n − k iterations instead of k(n − k), thus update = O((n − k)2d ′)

2. Update à la Lloyd’s

∀ cluster: (i) compute its medoid t, (ii) swap current centroid with t.

Medoid t minimizes
∑

i∈A d(i , t) over all possible objects t in cluster A.
Computed in O(a2d ′), assuming clusters have a ' n/k items.

Total Complexity, if checking all centroids at assignment
= O((ka2 + k(n − k))d ′) = O((n2/k + nk)d ′) = O(n2d ′)
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Clustering Large Applications (CLARA)

General Idea: run entire algorithm with sample of size n′ � n. Use s
samples drawn independently, return best clustering.

Overall algorithm:

for i = 1, . . . , s do
apply PAM on a random (uniform) sample of size n′

assign n points to k computed centroids
calculate the total cost of the partitioning

end for
return best partitioning

Experimental results recommend: s = 5, n′ = 40 + 2k .
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CLARA based on RANdomised Search (CLARANS)

Update: swap m’s with t’s, for some randomly selected (m, t)’s only.

Picking random Q ⊂ {1, . . . , k} × {1, . . . , n − k}, s times.

Select k centroids by some initialization method.
for i = 1, . . . , s do

Cluster n − k points to k centroids by some assignment method.
Randomly select set Q of pairs (m, t), |Q| < k(n − k).
for (m, t) ∈ Q do

Swap m with t; compute new objective value.
end for
Keep centroids with minimum objective value over |Q| choices.

end for
Output centroids yielding minimum objective value over s candidates.

Experiments recommend: s = 2, |Q| = max{0.12 · k(n − k), 250}.
[Ng-Han:Tran.Know.Data Eng’02;Theodoridis Et al:Patt.Recogn,ch.14]
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Improve Initialisation 1: Spread-out

initialization++ : k-means++ / k-medoids++:

(1) Choose a centroid uniformly at random; t ← 1.
(2) ∀ non-centroid point i = 1, . . . , n − t, let D(i)← min distance to
any of t chosen centroids.
(3) Choose new centroid: r chosen with probability proportional to
D(r)2:

prob[choose r ] = D(r)2/
n−t∑
i=1

D(i)2.

Let t ← t + 1.
(4) Go to (2) until t = k .

Expected approximation ratio = O(log k) [Arthur-Vassilvitskii:SODA’07]
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Improve Initialisation 2: Concentrate

Select centroids close to dataset’s center of mass (and to each other) as
follows.

(1) Calculate symmetric n × n distance matrix of all objects, i.e. all
distances dij from every object i = 1, . . . , n to every other object
j = 1, . . . , n, i 6= j .
(2) For object i compute

vi =
n∑

j=1

dij∑n
t=1 djt

, i = 1, . . . , n.

(3) Return the k objects with k smallest vi values.

Proposed in [Park-Jun’09] (in conjunction with Update à la Lloyd’s)
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Assignment by direct method

Exact approach for small data

At each iteration:

1 For every point, compute distance to every centroid.

2 Return (exact) nearest centroid.

Approximate approach for big data

At each iteration:

1 Index k centroids into data-structure, e.g. LSH hashtables.

2 For every non-centroid point, run ANN to find nearest centroid.

3 Return (approximate) nearest centroid.

This is the standard approach in almost all big data implementations today.
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Assignment by Range search

Inverse approach

Index n points once for entire algorithm. E.g. by Dolphinn or
LSH/DBH TableSize ≤ n/8 (avoid sparse buckets).

At each iteration, for each centroid c, range queries centered at c .

Mark assigned points: either move them at end of bucket (and insert
”barrier”), or mark them using ”flag” field.

Increase radii by ×2, start with min(dist between centers)/2, until all
points assigned, or most ranges do not assign a new point.

For a given radius, if a point lies in ≥ 2 balls, compare its distances to
the respective centroids, assign to closest centroid.

End: for every unassigned point, compare its distances to all centroids

[Broder et al.WSDM’14] [Avrithis,E et al.ICCV’15]
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Performance

Standard method: n ANN queries, each kρ, hence O(nkρ).

Inverse: k range queries, each nρ+output-size, hence O(n).

But, inverse method requires entire dataset in memory.

Analyze inverse method, including end-game and outliers.
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Inverted Quantized k-means (IQ-means)

The algorithm

inverse assignment (idea 1): faster than update!

quantization on dynamic 2d-grid [Avrithis:ICCV’13]

low-cost dynamic estimation of k

[Avrithis-Anagnostopoulos-Kalantidis-E,ICCV’15]
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Experiments

Performance

Comparison against
– AKM: Approximate k-means [Philbin et al. CVPR’07]
– RR: Ranked Retrieval [Broder et al. Web Search & Data Mining’14]
– standard k-means

Speed: IQ-means fastest

Accuracy: IQ-M on par with dedicated methods, worse than k-means.

http://github.com/iavr/iqm
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Performance

Distortion vs total time for 20 iterations on 106 images (SIFT1M):
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Experiment

500K Paris + 100Mil YahooFlicker images

Accurate cluster despite large dataset: Paris ground truth depicted in red
outline, the rest are images closest to the red ones.
Clustering in < 1 hr, single CPU.
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Internal evaluation

Evaluate clustering without reference to objective function. Try to capture
meaning of clustering.

Let k be the number of computed clusters.

Internal evaluation considers the given pointset and the clusters,
produces quality coefficient for each partition; k may be a variable.

External evaluation: use known class labels and benchmarks; usually
operated by humans.

In the sequel we present an internal evaluation method, mainly Silhouette,
which can be used to determine k .
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Silhouette

– For 1 ≤ i ≤ n, a(i) = average distance of i to objects in same cluster.
– Let b(i) = average distance of i to objects in next best (neighbor)
cluster, i.e. cluster of 2nd closest centroid.

Silhouette of Object i

s(i) =
b(i)− a(i)

max{a(i), b(i)}
=


1− a(i)/b(i), if a(i) < b(i)
0, if a(i) = b(i)
b(i)/a(i)− 1, if a(i) > b(i)

 ∈ [−1, 1].

Interpret silhouette

s(i)→ 1: i seems correctly assigned to its cluster;
s(i) ' 0: borderline assignment (but not worth to change);
s(i)→ −1: i would be better if assigned to next best cluster.
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Silhouette: Cluster and clustering

Specific clusters

– Evaluate a cluster: Compute average s(i) over all i in some cluster.
– If k is too large or too small, some clusters shall display much smaller
silhouettes than the rest.
– Try different k’s and see if clusters have roughly equal silhouettes.

Overall Clustering

Overall Silhouette coefficient = average s(i), over i = 1, . . . , n.

High if well clustered, low may indicate bad k (or existance of outliers).

Clustering induces space partition: may check if close to Voronoi?
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Proteins

Chains of aminoacids, from 20 choices. Each aminoacid consists of:
backbone N-Cα-C, residue Ri attached to Cα, i ∈ {1, . . . , 20}, Ri starts at

Cβi .

Structure determined by
3d coordinates of back-
bone atoms, basically
Cα.
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distance Root Mean Squared Deviation

Assume r distances di , i = 1, . . . , r , are known between point-pairs in X
and the corresponding pairs in Y , denoted by d ′i , i = 1, . . . , r ≤

(n
2

)
.

Definition (d-RMSD)

There is a distance metric, namely d-RMSD, where

distance-RMSD =

√√√√1

r

r∑
i=1

(di − d ′i )
2,

for r corresponding distances, r ≤
(n
2

)
.

• d-RMSD invariant under rigid transforms (incl. translation, rotation).
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Vector of distances

Equivalent formulation

Let
v(X ) = (d1, . . . , dr ), v(Y ) = (d ′1, . . . , d

′
r ) ∈ Rr

be the vectors of distances in X ,Y respectively. Their Euclidean distance is

‖v(X )− v(Y )‖2 =
√
r · d-RMSD(X ,Y ).

Subset of distances

• Use r ≤
(n
2

)
distances.

• Must correspond to the same pairs of points in all conformations.
• May choose r uniformly selected pairs among

(n
2

)
.

• May choose r smallest or largest distances, in one conformation.
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coordinate Root Mean Square Deviation

Definition (c-RMSD)

Two sets of n corresponding points xi , yi ∈ R3, i = 1, . . . , n, expressing the
backbone (Cα) atom coordinates in SAME coordinate frame. Then,

coordinate-RMSD =

√√√√1

n

n∑
i=1

|xi − yi |2.

Issue: Depends on relative position of pointsets as determined by rigid
transform (translation, rotation).

I.Emiris Algorithms in Data science
Thessaloniki, 19 September 2018 48 /

68



Linear algebra

Let the pointsets be X = [x1, . . . , xn]T ,Y = [y1, . . . , yn]T ∈ Rn×3, then

c-RMSD(X ,Y ) =
1√
n
|X − Y |F ,

which is the Frobenius norm of matrix X − Y , the norm generalizing the
notion of Euclidean norm from vectors to matrices:

Definition (Frobenius norm)

Given orthogonal matrix M = (Mij)ij , its squared Frobenius norm is

|M|2F =
∑
i ,j

M2
ij = tr(MTM),

where tr(A) =
∑

i Aii is the trace of square matrix A.

For c-RMSD, M = X − Y is n × 3 and MTM is 3× 3.

I.Emiris Algorithms in Data science
Thessaloniki, 19 September 2018 49 /

68



Optimal 3D Alignment

Definition (Problem)

Find (1) translation and (2) rotation minimizing c-RMSD.

1. Translate to common origin by subtracting the centroid from all xi ∈ X :

xc =
1

n

n∑
i=1

xi ,

and by subtracting centroid yc from all points yi in ”set” Y .
I.Emiris Algorithms in Data science
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Rotation matrices

2. Rotate to optimal alignment by 3× 3 rotation matrix Q, where
QTQ = I , detQ = |Q| = 1 (orthonormal).
If common centroid = 0, c-RMSD(X ,Y ) = minQ |Y − XQ|F .

SVD (Singular value decomposition): XTY = UΣV T , where

UTU = V TV = I , Σ =

 σ1 0 0
0 σ2 0
0 0 σ3

 : σ1 ≥ σ2 ≥ σ3 ≥ 0,

where U,V ,Σ are 3× 3, singular values σi ≥ 0.

Theorem

We search for rotation Q s.t. V TQTU = I ⇔ Q = UV T .

If det(UV T ) ' −1, negate 3rd column of U to get W , return Q = WV T .
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Algorithm

Algorithm

Input: pointsets X ,Y ∈ Rn×3 of n corresponding points.
Output: minimum c-RMSD of translated and rotated sets.

xc ←
∑n

i=1 xi/n, yc ←
∑n

i=1 yi/n.
X ← {x − xc : x ∈ X}, Y ← {y − yc : y ∈ Y }.
SVD: XT ∗ Y = UΣV T .
Check: Confirm σ3 > 0, where Σ = diag[σ1, σ2, σ3].
Q ← U ∗ V T .
if detQ < 0 then Q ← [U1,U2,−U3] ∗ V T

end if // Ui : ith column
Return |X ∗ Q − Y |F /

√
n // =

√∑n
i=1 |Qxi − yi |2/n
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Implementation

• LAPACKE: (high-level) C Interface to LAPACK,
www.netlib.org/lapack/lapacke.html.

lapacke.h: 2D arrays passed as pointers (to 1D array), and
int ∈ { LAPACK ROW MAJOR, LAPACK COL MAJOR }
Routines: LAPACKE_xbase: x ∈ { s,d } for single, double precision,
base = gesvd for SVD, getrf for LU decomposition (for det).

BLAS: cblas xgemm yields αop(A)op(B) + βC , op(A) = A or AT

• GNU Scientific Library (GSL)

Vectors and Matrices: containers.

BLAS Support: gsl_blas_xgemm

Linear Algebra, e.g. gsl_linalg_SV_decomp

• EIGEN C++ library
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Discretized curves

Definition

A discretized (or polygonal) curve is a sequence of vertices
p1, . . . , pm ∈ Rd over a single (time) parameter.

Traversal:

1 A traversal starts at the beginning, traces both curves.

2 At each step, cannot advance by more than a point per curve.

3 At each step, advance on at least one curve.
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Curve similarity

Let T be the set of possible traversals for curves P, Q.

Discrete Fréchet Distance (DFD)

Their DFD (metric) is

dF (P,Q) = min
T∈T

max
(ik ,jk )∈T

‖pik − qjk‖2

Definition (Dynamic Time Warping (DTW))

Their DTW (non-metric) distance is:

dDTW (P,Q) = min
T∈T

∑
(ik ,jk )∈T

‖pik − qjk‖2
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Point sequences

Definition (Product of metrics)

Let x1, . . . , xm, y1, . . . , ym ∈ Rd , d ∈ N∗ of (fixed) length m. Define their
`p-product in `2 as the metric with distance function

dm,p((x1, . . . , xm), (y1, . . . , ym)) =

(
m∑
i=1

‖xi − yi‖p2

)1/p

, p ≥ 1.

This is the `p norm of (‖x1 − y1‖2, . . . , ‖xm − ym‖2).
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ANN for point sequences

Definition (Problem)

Given n point sequences of length m: P1, . . . ,Pn ∈
(
Rd
)m

, approximation
parameter ε > 0, build data structure s.t. for query sequence Q, it reports
Pi : dm,p(Pi ,Q) ≤ (1 + ε) · dm,p(Pj ,Q), ∀j .

Solution

Random projection maps points in `d2 to `kp , k = O∗(d):

Multiply with Gaussian matrix: elements i.i.d. in N(0, 1)

Now `p product of `p: vectorize sequences in Rmk .

Random projections yield efficient ANN data-structures [E,Psarros’18].
reduce ANN for point sequences in

((
Rd
)m
, dm,p(·, ·)

)
to ANN for points

in
(
RO∗(md), ‖ · ‖p

)
.
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Metrics on curves

Definition (`p-distance of polygonal curves)

Given polygonal curves V = v1, . . . , vm1 , U = u1, . . . , um2 , we define the
`p-distance between V and U as follows:

dp(V ,U) = min
T∈T

 ∑
(ik ,jk )∈T

‖vik − ujk‖
p
2

1/p

,

where T denotes the set of all possible traversals for V and U.

d∞(V ,U) coincides with DFD over `2, d1(V ,U) coincides with DTW.
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ANN for polygonal curves

Observation

Each traversal of V , Q is uniquely defined by its length `, and the index
sets IV , IQ where only V ,Q is progressing, resp. If we fix IV , IQ , `, we
obtain point sequences.

Idea: build ANN structures for point sequences, for all possible IQ , IQV , `.

Theorem (E,Psarros’18)

Let a randomized data structure for ANN in `p-products of `2 use space
S(n), preprocessing T (n), query time Q(n), with failure probability
< 1/22m+1m.
Then, there exists an ANN data structure for the `p-distance of polygonal
curves, p ∈ [1,∞), using space O∗(2mS(n)), preprocessing O∗(2mT (n)),
query O∗(2mQ(n)), where m bounds the length of polygonal curves, and
failure probability < 1/2.
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Complexity of NN

Our projection-based method is optimized for approximation; refs
[Driemel,Silvestri’17], [E,Psarros’18]

DFD:

Space Query Approx. Ref.

O∗(4mdn) O∗(4md log n) O(d3/2) [DS17]

O∗(n) · 2O∗(m·d log 1
ε) O∗(d · 4m log n) 1 + ε [EP18]

DTW:

Space Query Approx. Ref.

O∗(mn) O(m log n) O(m) [DS17]

O∗(n) · 2O(md log 1
ε) O∗(d · 4m log n) 1 + ε [EP18]
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Mean of two curves

Definition (Mean Discrete Fréchet Curve)

Given curves P,Q, let T = (i1, j1), . . . , (it , jt) be any optimal traversal for
DFD. The Mean Discrete Fréchet Curve is defined (not uniquely) as

MDFC (P,Q) = (pi1 + qj1)/2, . . . , (pit + qjt )/2.
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Mean of n curves

Definition

The Mean Discrete Fréchet Curve of a set of n curves is the curve that
minimizes the sum of DFD’s to all of them.

Compute exact Mean of n curves in O(mn), m = max curve length.

Approximate the Mean Discrete Fréchet Curve in O(nm2):
– Build complete binary tree, height h = blg nc, curves correspond to leaves
– At each node, compute Mean of two children in Post-Order Traversal.
– Mean curve corresponds to the root.

Now we can apply k-means for clustering.

I.Emiris Algorithms in Data science
Thessaloniki, 19 September 2018 63 /

68



Outline

1 Clustering
Vector spaces
Metric spaces

2 General Improvements
IQ-means
Number of clusters

3 Applications
Clustering of proteins
Discretized curves
Representation

I.Emiris Algorithms in Data science
Thessaloniki, 19 September 2018 64 /

68



Complex shapes

Road segments, trajectories and Time-series (anomaly detection)

1. Rotamers by χ samples

2. Steric clashes, then final

Representation of octapeptide, and Clustering: Euclidean vector of
backbone distances (276), or angles and distances (59).

Goal: 3D shapes, CAD models (the “Google of shapes”)
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Convolutional neural networks

[AlexNet’12]: 16% top-5 error on ImageNet, outperformed all by 10%

Up to 38 Mil parameters, 450 KFlops, 600 KB storage.
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Inside CNN’s

convolution
softmax

pooling: average or max (no overlap)
fully-connected: matrix multiplication

[Images of Y. Avrithis]
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Deep neural networks

– PointNet(++) [Guibas et al.] works on (local patches of) point clouds.
– DynamicGraphCNN: on edges of nearest neighbor graph of point cloud.
– SplineCNN treats B-splines and (adaptive) LR-splines.
– http://geometricdeeplearning.com/

– Deep CNN’s identify and capture semantic information in a vector.
– These vectors can be considered in a standard (Euclidean) topology.
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