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Uniform coordinates

Sample each coordinate and normalize is too naive.



Unit Simplex

Distinct uniform variables

1. Pick uniform distinct integers; then sort:
x0 = 0 ≤ x1 < · · · < xd ≤ xd+1 =M.

2. Point [yi = (xi − xi−1)/M : i = 1, . . . , d] is uniform.

Complexity = O(d logd) [Smith,Tromble’04].
Fastest for d < 80 using Bloom filter (rather than hashing).

Exponential random variables

1. Pick uniform xi ∈ (0, 1); set yi = − ln xi, i = 1, . . . , d+ 1.

2. Let T =
∑d+1
i=1 yi, then [y1/T, . . . , yd/T ] is uniform.

Complexity = O(d) [Rubinstein,Melamed’98].

Arbitrary with vertices vi: x ∈ unit simplex,
∑d+1
i=1 xivi is uniform.
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Uniformly distributed points

I rejection shall not work: exponentially many points in
bounding cube / simplex but outside P.
Curse of dimensionality.

I for arbitrary polytopes we need random walks

e.g. grid walk, ball walk, shake-and-bake, hit-and-run.



Random Directions Hit-and-Run (RDHR)

P

x
B

`

Input: point x ∈ P and polytope P ⊂ Rd

Output: a new point in P

1. line ` through x, uniform on B(x, 1)

2. x is uniformly disrtibuted on P ∩ `
Perform W steps, return x.
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Random Directions Hit-and-Run (RDHR)
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`
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Input: point x ∈ P and polytope P ⊂ Rd

Output: a new point in P

1. line ` through x, uniform on B(x, 1)

2. x is uniformly disrtibuted on P ∩ `
Perform W steps, return x.

I x ∼ uniformly distributed in P after W = O∗(d3) steps [LV’06]



Coordinate Directions Hit-and-Run (CDHR)
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Input: point x ∈ P.

Output: a new point in P.

1. line ` through x, uniform on
{e1, . . . , ed}, ei = (. . . , 0, 1, 0, . . . )

2. x uniformly ∈ P ∩ `.
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Coordinate Directions Hit-and-Run (CDHR)

x

`

P
Input: point x ∈ P.

Output: a new point in P.

1. line ` through x, uniform on
{e1, . . . , ed}, ei = (. . . , 0, 1, 0, . . . )

2. x uniformly ∈ P ∩ `.
Perform W steps, return x.

“Continuous” grid walk: Converges to uniform, unknown mixing
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The problem

Input: H-polytope P := {x ∈ Rd | Ax ≤ b, A ∈ Rm×d, b ∈ Rm}

Output: Euclidean volume of P.

I #-P hard for vertex, halfspace representations [Dyer,Frieze’88]

A V-polytope is defined by vertices v1, . . . , vn ∈ Rd:
P := { λ1v1 + · · ·+ λnvn ∈ Rd | λ1 + · · ·+ λn = 1, λi ≥ 0}



Approximation

Given an H-polytope in Rd:

I no deterministic poly-time approximation has less than
exponential error [Elekes’86]; error ≤ d! [Betke,Henk’93]

I randomized poly-time approximation with high probability,
arbitrarily small error (fully polynomial-time randomized
approximation scheme - FPRAS), sampling and ball sequence
[DFKannan’91] in O∗(d23).

I Hit-and-Run sampling [KanLovSimon’97].

I O∗(d4m) [Lovász,Vempala’06] by simulated annealing
(adaptive sequence); if rounded O∗(d3m) [CousinsV’14].
Recently O∗(d2m2) [Lee,Vempala’17].



Implementations

Exact: do not scale to dimension > 15

Randomized:

I [Lovász,Deák’12] only in ≤ 10 dimensions.

I Matlab code by Cousins & Vempala based on [LV06]

I VolEsti: based on Sampling [E-Fisikopoulos]

I Hit-and-run in non-convex regions [Abbasi-Yadkori et al.’17]



Multiphase Monte Carlo (sequence of balls)

P0 = B(c, r)

B′ = B(c, ρ)

P

P1

I Cocentric balls B(c, 2i/d),
i = bd log rc, . . . , dd log ρe,
B(c, r) ⊂ P ⊂∼ B(c, ρ).

I Pi := P ∩ B(c, 2i/d).

Fraction of number of points in Pi
over that in Pi−1 approximates ratio
of volumes: vol(Pi)/vol(Pi−1) > 1.

vol(P) = vol(Pd log r)

dd log ρe∏
i=bd log rc+1

vol(Pi)

vol(Pi−1)
[DFK91]



Sandwiching

B = B(c, r)

B′ = B(c, ρ)

P

I compute max inscribed ball B(c, r) of P, by LP:
max r : Aix+ r‖Ai‖ ≤ bi, i = 1, . . . ,m

I compute a uniformly distributed p ∈ B(c, r); hit-and-run
generates N uniform points ∈ P

I ρ = max distance between c and N points: P ⊂∼ B(c, ρ)



Rounding (to isotropic position)

1. given set S of s uniformly distributed points ∈ P
2. compute (approximate) min-volume ellipsoid E covering S:
E/(1+ ε)d ⊂ CH(S) ⊂ E = {x : (x− c)TLTL(x− c) ≤ 1}

3. compute L mapping E to unit ball B: apply L to P

P

P ′

E

B

Iterate till ratio of max over min ellipsoid axis reaches threshold:
Efficiently handles skinny polytopes in practice.



Complexity

Theorem (Kannan,Lovász,Simonovits’97; Lovász’99)

Let B(c, r = 1) ⊆ P ⊆ B(c, ρ). The algorithm computes, with
probability ≥ 3/4, an estimate in [(1− ε)vol(P), (1+ ε)vol(P)], by

O∗(d4ρ2) = O∗(d5)

oracle calls with probability ≥ 9/10, where ρ = O∗(
√
d) by

isotropic sandwiching, and ε > 0 is fixed.

Runtime

I N = 400ε−2d logd random points per Pi
I each point computed after W ∼ 1011d3 walk steps



[E-Fisikopoulos]

I coordinate (vs. random) directions hit-and-run (CDHR):
boundary oracle in O(m).

I Set W = b10+ d/10c random walk steps, also in [LovDeák]:
achieves < 1% error in up to 100 dim, vs. ' 1011d3 steps.
Hence our algorithm takes O∗(md3) ops.

I sample partial generations of ≤ N points per ball ∩P, starting
from largest; saves constant fraction per ball.

I rounding in O∗(sd2) = O∗(d3) [Khachiyan’96]; k iterations in
O∗(k(md+ d3)), typically k = 1.



VolEsti software

I github.com/vissarion/volume_approximation

I C++, 2.5K lines

I CGAL for LP, min-ellipsoid; Eigen for linear algebra

I Google summer of code 2018: R interface.

github.com/vissarion/volume_approximation


Experimental results

I approximate the volume of polytopes (cubes, random, cross,
birkhoff) up to dimension 100 in < 2hrs with mean error < 1%

I estimate always in [(1− ε)vol(P), (1+ ε)vol(P)], for given ε,
d ≤ 100 (vs prob. 3/4 [KLS’97]), with W = Θ(d)

I CDHR faster and more accurate than RDHR

I Matlab code [CousinsVempala]: competitive in high dim



Runtime vs. dimension
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Performance on B5

accuracy (max−min)/µ (+), time N ·W = 105, . . . (levels)
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Birkhoff polytopes

Bn = {x ∈ Rn×n | xij ≥ 0,
∑

i xij = 1,
∑

j xij = 1, 1 ≤ i, j ≤ n}:
perfect matchings of Kn,n, or Newton polytope of determinant.

n d estimate
asymptotic estimate

asympt.
exact

exact
asympt.[CanfieldMcKay09]

4 9 6.79E-002 7.61E-002 0.89194 6.21E-002 0.81593
5 16 1.41E-004 1.69E-004 0.83444 1.41E-004 0.83419
6 25 7.41E-009 8.62E-009 0.85987 7.35E-009 0.85279
7 36 5.67E-015 6.51E-015 0.87139 5.64E-015 0.86651
8 49 4.39E-023 5.03E-023 0.87295 4.42E-023 0.87786
9 64 2.62E-033 2.93E-033 0.89608 2.60E-033 0.88741

10 81 8.14E-046 9.81E-046 0.83052 8.78E-046 0.89555
11 100 1.40E-060 1.49E-060 0.93426 ? ?
12 121 7.85E-078 8.38E-078 0.93705 ? ?
13 144 1.33E-097 1.43E-097 0.93315 ? ?
14 169 5.96E-120 6.24E-120 0.95501 ? ?
15 196 5.70E-145 5.94E-145 0.95938 ? ?

All volumes in few hrs; exact V(B10) in ∼1 year [BeckPixton03].
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Ellipsoid

Need to generalize:

I Boundary oracle: solve univariate quadratic equation.

I Compute internal point, inscribed ball, enclosing ball.

I Define sequence of concentric balls: Stop when all rays first
hit the inscribed ball.

This, financial application in [Calès-Chalkis-E-Fisikopoulos,
SoCG’18]



Internal point

I Transform ellipsoid to sphere H0, transform simplex similarly.

I Find B(p, r) of max radius r, satisfying constraints:

dist(p,Hi) ≥ r⇔ aTi p+ bi ≥ r‖ai‖,

dist(p,H0) ≥ r⇔ ‖p− c0‖ ≤ r0 − r.
This is a Second Order Cone Program. In general, polytope
intersection with O(1) balls.

I Solved by SDP / interior-point method in poly-time.

I Inverse transform yields inscribed ellipsoid, maybe not max.
Center is good internal point.

I Get max inscribed ball by taking distance of p to Hi’s.



Non-convex nonlinear bodies

Two concentric ellipsoids intersect simplex.

I Hit-n-Run: ray may not intersect ellipsoid iff quadratic
equation yields only complex solutions.

I Sample simplex until interior point found. Define
ε-Chebyshev-ball. Enclosing ball contains a point sample.

I Decreasing ball sequence stops when rays first hit ε-ball.

Experimental Results:

I Works for d < 35 with same walk-length, #sample points.

I Runtime / accuracy competitive to convex region defined by
one ellipsoid.

I Open for d ≥ 35: fails to approximate volume in most cases
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Financial markets

Stock markets exhibit 3 types of behavior:

I Normal: slightly positive returns, moderate volatility.

I Up-market (bubbles): high returns, low volatility.

I Crises: strongly negative returns, high volatility.

The copula is a volatility-return probability distribution.
Figure: up-market and crisis: bubble burst in Sep. 2000.



Financial modeling

I Portfolios of d+ 1 assets represented by simplex ∆d ⊂ Rd+1.
I For portfolio ω ∈ ∆d, returns R ∈ Rd+1, total return
f(ω,R) = RTω is linear combination of returns.

I Cross-sectional score of portfolio ω∗ is vol(∆∗)/vol(∆d) s.t.

∆∗ = {ω ∈ ∆d : f(ω,R) ≤ f(ω∗, R)}.

Score corresponds to cumulative distribution of f(ω,C).

I Volatility is quadratic form of returns.



Families of constraints

I Let Rij be the return at day i of asset j. Consider compound
returns over k days starting at day i: define (d+ 1)-vector v
whose j-th coordinate, j = 1, . . . , d+ 1, equals

vj = (1+ Ri,j)(1+ Ri+1,j) · · · (1+ Ri+k−1,j) − 1.

Normal vector v defines family of hyperplanes.

I Volatility requires estimation of the returns’ variance –
covariance matrix, yielding concentric ellipsoids.

I Copula populated by intersecting ∆d along asset
characteristics: Hyperplane families normal to two compound
vectors, or to one vector and concentric ellipsoids.



Formula for single halfspace

Let H : aTx ≤ a0, a = (a1, . . . , ad), let S be the unit simplex.

1. Let yi = ai − a0 if ≥ 0, i = 1, . . . , K,
xi = ai − a0 if < 0, i = 1, . . . , J, s.t. J+ K = d.

2. Initialize A0 = 1,A1 = · · · = AK = 0.

3. For j = 1, . . . , J do:

Ak ←− ykAk − xjAk−1
yk − xj

, k = 1, . . . , K.

For j = J,
AK = vol(S ∩H) / vol(S).

Complexity = O(d2) [Varsi’73,Ali’73,Gerber’81].



Simple polytopes

Simple P; c ∈ Rd, q ∈ R s.t. cTx+ q not constant on any edge.
For vertex v, Av = d× d matrix: columns are hyperplanes by v.

Let γv s.t. Avγv = c, then

vol(P) =
1

d!

∑
v

(cTv+ q)d

|detAv|
∏d
i=1 γ

v
i

.

Complexity ' d3#vertices [Lawrence’91], using V-rep, H-rep.
Open: pick c to avoid cTx+ q being nearly constant on edge:
causes instability. Thus use exact operations for d > 30.



Constant number of hyperplanes

Unit simplex intersected by sufficiently generic hyperplanes =
simple polytope; constant h = #hyperplanes ⇒ formula in O(d3):

“Worst-case” vertex belongs to h hyperplanes
∑
i cijxj = ci0,∑

i xi = 1, and d− h− 1 hyperplanes xi = 0; up to permutation:

Av =



1 1 c11 · · · ch1
. . .

...
...

...

1
...

...
...

...
...

...
1 c1d · · · chd


Linear solve = O(d), detAv in O(1), #vertices = O(d2).
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Polytope Oracles

Membership oracle

Given point y ∈ Rd, return yes if y ∈ P otherwise return no.

Boundary oracle

Given y ∈ P, ray ` through y, return points ` ∩ ∂P.

P P

y

`

y



Approximation

Given is polytope P ⊂ Rd and approximation parameter ε ∈ (0, 1):

Definition (Approximate Polytope Membership)

Preprocess P into data-structure so that, given query point q,
decide whether q ∈ P or not. If d(q, ∂P) ≤ ε · diam(P) the data
structure can answer either way.

Definition (Approximate Polytope Boundary)

Preprocess P into data-structure so that given query ray r
emanating from y ∈ P, compute point r∗, s.t.

r∗ ∈ r and d(r∗, ∂P) ≤ ε · diam(P).

Previous approaches have complexity exponential in d.



Reduction

Exact setting [Aurenhammer’87]

Let P ⊂ Rd have n facets. ∀p∗ ∈ P \ ∂P, compute set S of n
points: membership of q reduces to finding its Nearest Neighbor in
S ∪ {p∗}

Let P−ε = {x ∈ P | d(x, ∂P) > ε · diam(P)} 6= ∅.

Approximate Membership reduces to εANN on S ∪ {p∗}, p∗ ∈ P−ε.

Theorem (Complexity)

We answer Approximate Membership queries in O∗(dnρ+o(1)),
using O∗(n1+ρ+o(1) + dn) space, whp, where ρ ≤ 1/(1+ 4ε2) < 1.

[Anagnostopoulos-E-Fisikopoulos’17]



Approximate Boundary Oracle

1. Compute t1 /∈ P, t1 ∈ r, where r is ray shooting query.

2. For ti 6∈ P, iteratively compute ti+1 closer to apex:
I Let pi be nearest neighbor of ti.
I Let Hi be hyperplane supporting facet Fi defining pi.
I Then ti+1 = Hi ∩ r.

3. Terminate by checking (approximate) membership oracle.

Approximate version may get stuck in local “optimum”: If ti does
not decrease distance to apex, set
ti := (ti−1 − r.apex) − r.unitdir · ε.



Membership experiments, and Outlook
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Approximate Boundary similarly fast but inaccurate.

Application: Polytope sampling, Volume
estimation in d ≥ 600 for (non)convex
(non)linear bodies: various applications, e.g.
financial modeling
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VolEsti 2018

I VolEsti is a C++ library for sampling and volume
approximation of convex bodies (e.g. polytopes) with an R
interface [Chalkis].

I VolEsti can be used to
(a) generate some well known polytopes (cubes, simplices,
cross-polytopes, zonotopes),
(b) compute approximation of volumes,
(c) sample from convex polytopes approximating uniform or
spherical gaussian distribution.



Installation

I Get the R interface of VolEsti at
https://github.com/TolisChal/volume_

approximation/tree/volesti_tutorial

I Download the zipfile from github and extract it locally.

I Open with Rstudio file volesti.Rproj in folder /R-proj.

I At the Build menu, click ”build source Package”, then click
”Build and Reload”.

I More instructions in instructions.txt in folder /R-proj.

https://github.com/TolisChal/volume_approximation/tree/volesti_tutorial
https://github.com/TolisChal/volume_approximation/tree/volesti_tutorial


Examples

1. Generate a d-dimensional cube in H-rep:
> cube = GenCube(d, ′H ′)

2. Sample 1000 points in cube using CDHR, W = b10+ 10/dc:
> P = sample points(A = cube$A, b = cube$b,N = 1000)

3. Approximate the volume of cube using RDHR, W = 20,
> vol = volume(A = cube$A, b = cube$b,walk length =
20, coordinate = FALSE)

More examples in instructions.txt in folder /R-proj.



Tests

I Test Coordinate Directions Hit-and-Run vs d. Consider a
constant number of sampled points N for a family of
polytopes (e.g. d-dim cubes). Check runtime as d increases.

I Test CDHR efficiency vs N. Fix d and vary N.

I Compare CDHR with Random Directions Hit-and-run: For a
family of polytopes, run both schemes and compare runtimes.

I Test volume approximation: For a family of polytopes, run
CDHR as N,d vary: check accuracy vs runtime.

I Compare CDHR with RDHR on volume: For a family of
polytopes, run both and compare volumes and runtimes.

Set flag verbose=TRUE.



Peacock test

I It generalizes, for 2d and 3d samples, the Kolmogorov-Smirnov
test, a non-parametric test for comparing two samples.

I The null hypothesis (output 0) is that the two samples are
drawn from the same distribution, otherwise the test returns
(close to) 1.

I To install package Peacock.test, run in Rstudio:
> install.packages("Peacock.test")
> library("Peacock.test") #activation

I Peacock.test offers functions peacock2(x,y) and
peacock3(x,y), for 2d and 3d samples: x, y are N× d
matrices.



Test samples

1. Use sample simplex() to sample N=100 uniform points
from the 3-dimensional simplex.
Use GenSimplex() to generate a 3d simplex, and
sample points() to sample N=100 points using CDHR.
How is the value of the Peacock test varying with
walk length?

2. Construct a 2d skinny simplex (triangle) and use
sample simplex() to sample uniform points.
Repeat (1) with N=100 by passing skinny simplex to
sample points().
Solutions in sampling tutorial.R.
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Test skinny polytopes

From sampling tutorial.R.

V = matrix(c(0, 0, 0, 7, 100, 0), ncol = 2, nrow = 3, byrow = TRUE)

yields #V-rep of 2d skinny simplex.

A = matrix(c(−1, 0, 0,−1, 0.07, 1), ncol = 2, nrow = 3, byrow = TRUE)

yields #H-rep of skinny cube.

sample1 = sample simplex(vertices=V, N=100)
sample2 = sample points(A=A,b=c(0,0,7),N=100,walk length=1)
or: sample2=sample points(V=V,N=100,walk length=1)
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