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Clustering

Definition (k clusters)

Given n objects, and k > 1, partition the objects into k subsets (clusters)
so as to optimize some objective function.

@ Objects in the same cluster are more “similar” (or closer) to each
other than to those in other clusters.

@ Possible criteria: minimizing the total distance among all cluster
points, minimizing the distance of cluster points to some center, etc.

@ Variations: k is unknown and computed, e.g., by the Silhouette
method. Capacitated/balanced: k given, clusters of equal cardinality.

@ Applications: Classification, Social Network Analysis, Recommender
Systems, Market Research, Bioinformatics etc
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Good Clustering, with centers
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Approaches

e hierarchical (agglomerative): each point initializes a cluster, merge
closest clusters, until stopping criterion (e.g., predetermined number
of clusters), or if closest pair too far apart.

@ point-assignment: given some initial clusters, assign points to “best”
cluster, update cluster representative/centroid; example: k-means (our
focus). Might allow combining / splitting clusters, or unassign points.

[Ullman et al:Mining Massive datasets]
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@ Clustering
@ Vector spaces
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Vector spaces

Problem definition

@ Clustering that minimizes objective function.
@ k is given.

@ Centroids do not have to be part of the dataset

W
k-means

@ k-means is the most common problem: Main algorithms:
— Lloyd's algorithm is standard.
— Elkan’s uses triangular inequality to accelerate updates.

@ Also used to construct initial clusters for more sophisticated method.

@ In Euclidean space, assignment is point location to k Voronoi cells.
/
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k-means: Objective function

Typical ambient space is R but can generalize to metric space D.

Minimization function

In any metric space D with distance metric d, let the dataset be
P={x1,....,xo,} SP CD, k>1. Given centroids C C D, let

d(xi, C) = mig d(xi, c).

CE

Take vector v(C) = (d(x1, C),...,d(xn, C)). The k-means objective is:

min V(C)I3 = 3 d(x, €2

CD,|C|=k
ceo,ic| p

v

The k-means objective is NP-hard, but for the ¢, metric, Lloyd's algorithm
converges quickly to a local minimum.
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Variations

Various minimizations
Recall P = {x;}, v(C) = (d(x1, C),...,d(xs, C)), where C C D are the
centroids, and the k-means objective is:

i OlIZ=Y d(x;, €)%
ch",|'2|:k”V( )3 ; (xi, €)

Similar objectives:

— k-median: minccp cj=k [[V(C)ll1,
— k-medoid: minccp |cj=« V(€)1
— k-center: minccp |cj=« [V(C)llc,
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Algorithm

Initialize k centers randomly (or using some strategy).
© Assignment: Assign each object p; to its nearest center.
@ Update: Mean + Z,Tzl p; of each cluster becomes new center.

Repeat the two steps until there is no change in the assignments.

Properties

| A\

o Each distance calculation = O(d) add/mul, because vectors in R€.
@ Assignment = O(nkd) add/mul, Update = O(nd) add.

@ Fiterations unknown, in practice < n.

o Converges to local minimum in Euclidean space (depends heavily on
initialization).
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Initialization
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Lloyd’s 1
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Lloyd's 2
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Lloyd's 3
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Lloyd’s 4
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Bottleneck of Lloyd's is assignment (distances).
Use the Triangle inequalities to reduce distance calculations.

Lemma (Triangular)

If center c is updated to ¢’ then:
|d(X7 C) _ d(C, C/)‘ < d(X7 C/) < d(X7 C) + d(C, C/)'

For centers a, b, and point x: d(x,a) < d(a, b)/2 = d(x,a) < d(x, b).

Corollary: x shall not be assigned to b.
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Maintain bounds

Initialisation

@ Pick initial centers ¢ and assign each x to closest center c(x).

@ Set u(x) + d(x, c(x)): upper bound to own center;
I(x,c) < min{d(x,c): ¢ # c(x)}: lower bound to other centers.

Update bounds

Compute d(c;, ¢j) for all centers ¢; # ¢;.

e Update x's bound to its new center ¢’: u(x) < u(x) + d(c, c’).

e Update when ¢ changes to ¢”: I(x,c’) + |I(x,c) — d(c, c')|.

These bounds follow from the triangular inequalities.
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Elkan's Assignment

for each point x do
if u(x) < d(c(x),c’)/2, for all centers ¢’ # ¢(x) then Skip x;
continue
end if
for each ¢’ to which x is not assigned do
if u(x) not opt, compute u(x) < d(x, c(x)); mark u(x) as opt;
if u(x) <d(c,c)/2, or u(x) < I(x,c’) then Skip ¢’; continue
end if
compute d(x, c¢’);
if d(x,c’) < u(x) then assign x to ¢’; set u(x) « d(x, c’)
else update /(x,c’) «+ d(x,c);
end if
end for
end for
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Elkan's algorithm

Elkan’s algorithm, compared to Lloyd’s,
— offers large experimental speedup,
— yields same output, same convergence,

— requires much higher storage.

We later propose a method to accelerate updates based on range search.

Algorithms in Data science
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Goal: Handle any distance metric; k-means only if mean defined.
k-medoids (PAM is simplest algorithm) use centroids belonging to dataset

Definition (Medoid)

The medoid of a set is the object of the set that minimizes total
dissimilarity (sum of distances) to all other objects in the set.

Objective function: minccp cj=« [[(d(x1, C), ..., d(xn, C))ll1-

— k-means tends to select convex spherical clusters; k-medoids less so.
— k-means is more sensitive to noisy data and outliers.
— k-means is faster and easier to implement.

[Kaufman-Rousseeuw’87]
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Partitioning Around Medoids (PAM)

Initialize k centroids randomly (or using some strategy).
@ Assignment of each object to nearest centroid; compute objective
@ Update:
for each centroid m do
for each non-centroid t do
Swap m and t, compute new objective function value.
end for
end for
Keep configuration (centroids) with min objective value.

Repeat steps 1 and 2 until there is no change of configuration (centroids).

v

Distance calculation := O(d’). Suppose update of objective
= O((n — k)d"), by comparing only 2nd best centroid, which is assumed
known. Hence, update = O((n — k)?kd") ~ n*d’.
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Update of Objective cost function

n—k

Objective function: J = Zdist(i7 c(i)), c(i) = centroid of i's cluster.
i=1

Vi store 2nd best centroid ¢’. Centroid m replaced by non-centroid t:

e For i in m's cluster, i.e. c(i) = m,

dist(/, t) — dist(i, m), if dist(i, t) < dist(i,c’) : do nothing
dist(7, ¢') — dist(i, m), if dist(/, t) > dist(i, c’) :

assign i to ¢/, update i's 2nd best centroid.

AJ =

@ For i in other cluster, i.e. c(i) # m,

J= 0, if dist(/, t) > dist(/, c(i)) : do nothing
 \ dist(i, t) — dist(i, c(7)) if dist(i, t) < dist(i, c(i)) : assign i to t

.
|.Emiris
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© General Improvements
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Accelerating updates

Two faster updates, which may however lose accuracy compared to PAM.
Recall that after every swap we assume J computed in O((n — k)d’).

1. Basic improvement

Instead of swapping centroid m with every point t, swap m only with every
non-centroid in same cluster as m.

Hence n — k iterations instead of k(n — k), thus update = O((n — k)?d")

2. Update a la Lloyd’s

V cluster: (i) compute its medoid t, (ii) swap current centroid with t.

Medoid t minimizes ) ;5 d(i, t) over all possible objects t in cluster A.
Computed in O(a%d’), assuming clusters have a ~ n/k items.

Total Complexity, if checking all centroids at assignment
= O((ka® + k(n — k))d') = O((n®/k + nk)d') = O(n*d")
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Clustering Large Applications (CLARA)

General Idea: run entire algorithm with sample of size n < n. Use s
samples drawn independently, return best clustering.

Overall algorithm:
fori=1,...,sdo
apply PAM on a random (uniform) sample of size n’

assign n points to k computed centroids

calculate the total cost of the partitioning
end for

return best partitioning

Experimental results recommend: s =5, n’ = 40 + 2k.

|.Emiris
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CLARA based on RANdomised Search (CLARANS)

e Update: swap m's with t's, for some randomly selected (m, t)'s only.
@ Picking random Q@ C {1,...,k} x {1,...,n— k}, s times.

Select k centroids by some initialization method.
fori=1,...,sdo
Cluster n — k points to k centroids by some assignment method.
Randomly select set Q of pairs (m, t), |Q| < k(n — k).
for (m,t) € Q do
Swap m with t; compute new objective value.
end for
Keep centroids with minimum objective value over |Q| choices.
end for
Output centroids yielding minimum objective value over s candidates.

v

Experiments recommend: s = 2, |Q| = max{0.12 - k(n — k), 250}.
[Ng-Han:Tran.Know.Data Eng'02; Theodoridis Et al:Patt.Recogn,ch.14]
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Improve Initialisation 1: Spread-out

initialization++ : k-means++ / k-medoids++:
(1) Choose a centroid uniformly at random; t «+ 1.
(2) V non-centroid point i =1,...,n—t, let D(i) - min distance to
any of t chosen centroids.
(3) Choose new centroid: r chosen with probability proportional to
D(r)?:
n—t
prob[choose r] = D(r)z/z D(i)?.
i=1
Let t < t+ 1.
(4) Go to (2) until t = k.

Expected approximation ratio = O(log k) [Arthur-Vassilvitskii:SODA'07]
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Improve Initialisation 2: Concentrate

Select centroids close to dataset’s center of mass (and to each other) as
follows.

(1) Calculate symmetric n x n distance matrix of all objects, i.e. all

distances dj; from every object i = 1,..., n to every other object

j=1,....ni%]
(2) For object i compute

n
S
_ Y P —
Vi_ nid', l—].,...7
1%t

(3) Return the k objects with k smallest v; values.

3

Proposed in [Park-Jun’09] (in conjunction with Update a la Lloyd’s)
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© General Improvements
@ |Q-means
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Assignment by direct method

Exact approach for small data

At each iteration:
© For every point, compute distance to every centroid.

@ Return (exact) nearest centroid.

Approximate approach for big data

At each iteration:
@ Index k centroids into data-structure, e.g. LSH hashtables.
@ For every non-centroid point, run ANN to find nearest centroid.

© Return (approximate) nearest centroid.

This is the standard approach in almost all big data implementations today.
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Assignment by Range search

Inverse approach

@ Index n points once for entire algorithm. E.g. by Dolphinn or
LSH/DBH TableSize < n/8 (avoid sparse buckets).

@ At each iteration, for each centroid ¢, range queries centered at c.

@ Mark assigned points: either move them at end of bucket (and insert
"barrier”), or mark them using " flag" field.

@ Increase radii by x2, start with min(dist between centers)/2, until all
points assigned, or most ranges do not assign a new point.

@ For a given radius, if a point lies in > 2 balls, compare its distances to
the respective centroids, assign to closest centroid.

@ End: for every unassigned point, compare its distances to all centroids

[Broder et al. WSDM'14] [Avrithis,E et al.ICCV'15]
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Performance

8
e @ o}
B ey
=]
0gp0e oo ©
o
2° o _
e oe
¢ e)
L]
o '@

o Standard method: n ANN queries, each k”, hence O(nk?).
@ Inverse: k range queries, each n’+output-size, hence O(n).

@ But, inverse method requires entire dataset in memory.

U Analyze inverse method, including end-game and outliers.
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Inverted Quantized k-means (1Q-means)

The algorithm

@ inverse assignment (idea 1): faster than update!
@ quantization on dynamic 2d-grid [Avrithis:ICCV'13]

@ low-cost dynamic estimation of k

[Avrithis-Anagnostopoulos-Kalantidis-E,ICCV'15]
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Experiments

Performance

@ Comparison against
— AKM: Approximate k-means [Philbin et al. CVPR'07]
— RR: Ranked Retrieval [Broder et al. Web Search & Data Mining'14]

— standard k-means

@ Speed: |Q-means fastest
@ Accuracy: IQ-M on par with dedicated methods, worse than k-means.

http://github.com/iavr/iqm
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Performance

Distortion vs total time for 20 iterations on 10° images (SIFT1M):
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Left: varying number of clusters k. Right: increasing number of points n.
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500K Paris + 100Mil YahooFlicker images

Accurate cluster despite large dataset: Paris ground truth depicted in red
outline, the rest are images closest to the red ones.
Clustering in < 1 hr, single CPU.
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© General Improvements

@ Number of clusters
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Internal evaluation

Evaluate clustering without reference to objective function. Try to capture
meaning of clustering.
o Let k be the number of computed clusters.

@ Internal evaluation considers the given pointset and the clusters,
produces quality coefficient for each partition; kK may be a variable.

@ External evaluation: use known class labels and benchmarks; usually

operated by humans.

In the sequel we present an internal evaluation method, mainly Silhouette,
which can be used to determine k.
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Silhouette

— For 1 < < n, a(i) = average distance of i to objects in same cluster.
— Let b(i) = average distance of i to objects in next best (neighbor)
cluster, i.e. cluster of 2nd closest centroid.

Silhouette of Object i

b(i) —a(i) 1 —a(i)/b(i), ifa(i

) < b(i)
s(i)= ———~—F~==1¢ 0, if a(i) = b(i) » €[-1,1].
max{a(i), b(i)} if a(i) > b(i)

Interpret silhouette

s(i) — 1: i seems correctly assigned to its cluster;
s(i) ~ 0: borderline assignment (but not worth to change);
s(i) = —1: i would be better if assigned to next best cluster.

|.Emiris
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Silhouette: Cluster and clustering

Specific clusters

— Evaluate a cluster: Compute average s(i) over all i in some cluster.

— If k is too large or too small, some clusters shall display much smaller
silhouettes than the rest.

— Try different k's and see if clusters have roughly equal silhouettes.

| A\

Overall Clustering

Overall Silhouette coefficient = average s(i), over i =1,...,n.

High if well clustered, low may indicate bad k (or existance of outliers).

A\

U Clustering induces space partition: may check if close to Voronoi?
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e Applications
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e Applications
@ Clustering of proteins
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Chains of aminoacids, from 20 choices. Each aminoacid consists of:
backbone N-Ca-C, residue Ri attached to Ca, i € {1,...,20}, Ri starts at
c’.

Cls
N Hi,
Structure determined by o, ¢ /%
. s ot
3d coordinates of l?ack- c}j% 1
bone atoms, basically co

Ca. i A\
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distance Root Mean Squared Deviation

Assume r distances d;,i = 1,...,r, are known between point-pairs in X
and the corresponding pairs in Y, denoted by d/, i =1,...,r < (J).

Definition (d-RMSD)

There is a distance metric, namely d-RMSD, where

1 r
distance-RMSD = | = 37(d; — d!)2
istance-RMS . ,-:1( g

for r corresponding distances, r < (3).

e d-RMSD invariant under rigid transforms (incl. translation, rotation). ]
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Vector of distances

Equivalent formulation
Let

v(X) = (di,....dy),v(Y) = (dl,....d) e R’

be the vectors of distances in X, Y respectively. Their Euclidean distance is

IV(X) = v(Y)ll2 = v/7 - d-RMSD(X, ),

Subset of distances

o Use r < ('2’) distances.
e Must correspond to the same pairs of points in all conformations.
e May choose r uniformly selected pairs among (3).

e May choose r smallest or largest distances, in one conformation.

|.Emiris Algorithms in Data science



coordinate Root Mean Square Deviation

Definition (c-RMSD)

Two sets of n corresponding points x;,y; € R3, i = 1,..., n, expressing the
backbone (C,) atom coordinates in SAME coordinate frame. Then,

) 1<
coordinate-RMSD = - Zl Ixi — yil?.
1=

Issue: Depends on relative position of pointsets as determined by rigid
transform (translation, rotation).
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Linear algebra

Let the pointsets be X = [x1,...,xa] ", Y = [y1,...,¥n]" € R™3, then

1
—|X-Y
\/ﬁ’ ‘F?

which is the Frobenius norm of matrix X — Y/, the norm generalizing the
notion of Euclidean norm from vectors to matrices:

c-RMSD(X, Y) =

Definition (Frobenius norm)

Given orthogonal matrix M = (My;);;, its squared Frobenius norm is

|M|F—ZM2—tr (MT M),

where tr{A) = >, Ajj is the trace of square matrix A.

For ccRMSD, M =X — Y isnx3and MT M is 3 x 3.
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Optimal 3D Alignment

Definition (Problem)

Find (1) translation and (2) rotation minimizing c-RMSD.

1. Translate to common origin by subtracting the centroid from all x; € X:

n
1
Xe = — E Xi,
n-
i=1

and by subtracting centroid y. from all points y; in "set” Y.
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Rotation matrices

2. Rotate to optimal alignment by 3 x 3 rotation matrix @, where
Q7TQ =1, det @ =|Q| =1 (orthonormal).
If common centroid = 0, c-RMSD(X, Y) = ming |Y — XQ|f.

SVD (Singular value decomposition): XTY = UZVT, where

cp 0 O
Ulru=v'v=1,$=|0 o0 0 |:01>00>03>0,
0 0 o3

where U, V', X are 3 x 3, singular values o; > 0.

We search for rotation @ s.t. VI QTU=1< Q= UVT. l

If det(UV'T) ~ —1, negate 3rd column of U to get W, return Q = WV,

|.Emiris
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Algorithm

Algorithm

Input: pointsets X, Y € R"*3 of n corresponding points.
Output: minimum c-RMSD of translated and rotated sets.
Xe 4 D1 Xi/n, Ye <= 3oy yi/n.
X {x—xc:xeX}, Y<{y—yc:yeY}
SVD: XTxY =UzVT.
Check: Confirm o3 > 0, where ¥ = diag[o, 02, 03].

Q+—U=xVT,

if detQ <0 then Q « [Ul, U2,—U3] * VT

end if // Ui : ith column

Return |X + @ — ¥|F /7 /| = VS @~ yilfn
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Implementation

e LAPACKE: (high-level) C Interface to LAPACK,
www.netlib.org/lapack/lapacke.html.

@ lapacke.h: 2D arrays passed as pointers (to 1D array), and
int € { LAPACK_ROW_MAJOR, LAPACK_COL_MAJOR }

@ Routines: LAPACKE_xbase: x € { s,d } for single, double precision,
base = gesvd for SVD, getrf for LU decomposition (for det).

@ BLAS: cblas_xgemn yields cop(A)op(B) + BC, op(A) = Aor AT

e GNU Scientific Library (GSL)
@ Vectors and Matrices: containers.
@ BLAS Support: gsl_blas_xgemm
@ Linear Algebra, e.g. gsl_linalg_SV_decomp

e EIGEN C++ library

|.Emiris Algorithms in Data science



Outline

e Applications

@ Discretized curves
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Discretized curves

Definition
A discretized (or polygonal) curve is a sequence of vertices
P, .-, Pm € RY over a single (time) parameter.
Ag
As
Ay Aq
Traversal:

© A traversal starts at the beginning, traces both curves.
@ At each step, cannot advance by more than a point per curve.

© At each step, advance on at least one curve.
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Curve similarity

Let 7 be the set of possible traversals for curves P, Q.

t/ﬁ\r‘i
\VALE

r

i

Discrete Fréchet Distance (DFD) *
Their DFD (metric) is VAR
r

de(P = mi . q:
F( ’ Q) [,_nég_ (/kr;rj]ka)é T ||plk qu ||2 The Frichet distance between the curves is the minimum

l=ash length that permits such a valk

Definition (Dynamic Time Warping (DTW))

Their DTW (non-metric) distance is:

dorw(P, Q) =min > [lpi, — gl
(ikdi)ET

|.Emiris Algorithms in Data science



Point sequences

Definition (Product of metrics)

Let Xi,...,Xm Y1,--.,¥m € R, d € N* of (fixed) length m. Define their
Lp-product in {> as the metric with distance function

1/p
dm,p((Xlu-"7Xm)a(.y17"'7ym) (Z “XI yl||2> bl PZ 1

This is the £, norm of (||x1 — yill2,- -, [|Xm — ¥ml|2).
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ANN for point sequences

Definition (Problem)

Given n point sequences of length m: Py, ..., P, € (R?)™, approximation
parameter € > 0, build data structure s.t. for query sequence @Q, it reports
Pi: dm,P(Pi’ Q) < (1 + 6) : dm,P(PJ" Q)v vj.

o Random projection maps points in ¢ to Z,’;, k = O*(d):

e Multiply with Gaussian matrix: elements i.i.d. in N(0, 1)

@ Now ¢, product of /,: vectorize sequences in R™,

Random projections yield efficient ANN data-structures [E,Psarros’18].
reduce ANN for point sequences in ((RY)”, dm p(:,-)) to ANN for points
in (RO*(md)a |- Hp)-
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Metrics on curves

Definition (¢,-distance of polygonal curves)

Given polygonal curves V.= vq,...,vm,, U =u1,...,un,, we define the
lp-distance between V and U as follows:

1/p

dp(V,U) = 7m€”71, Z lvi, — ujk“2p )
(iki)€T

where ‘T denotes the set of all possible traversals for V' and U.

dso(V/, U) coincides with DFD over ¢», di(V, U) coincides with DTW.
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ANN for polygonal curves

Observation

Each traversal of V, @ is uniquely defined by its length ¢, and the index
sets Iy, Ig where only V, Q is progressing, resp. If we fix Iy, Ig, ¢, we
obtain point sequences.

Idea: build ANN structures for point sequences, for all possible /g, Igy, ¥.

Theorem (E,Psarros'18)

Let a randomized data structure for ANN in {,-products of {> use space
S(n), preprocessing T(n), query time Q(n), with failure probability

< 1/22mtlm,

Then, there exists an ANN data structure for the {,-distance of polygonal
curves, p € [1,00), using space O*(2™S(n)), preprocessing O*(2™ T (n)),
query O*(2mQ(n)), where m bounds the length of polygonal curves, and
failure probability < 1/2.
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Complexity of NN

Our projection-based method is optimized for approximation; refs
[Driemel,Silvestri'17], [E,Psarros'18]

Space Query Approx. | Ref.
DFD:| O*(4™7n) O0*(4™ log n) O(d3/?) | [DS17]
0*(n) - 20" (mdlog2) | O*(d.4mlogn) | 1+e¢ |[EP1§

Space Query Approx. | Ref.
DTW: | O*(mn) O(mlog n) O(m) | [DS17]
0*(n)-20(mdloe%) | O*(d.4mlogn) | 1+e¢ | [EP1§
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Mean of two curves

Definition (Mean Discrete Fréchet Curve)

Given curves P, Q, let T = (i1, j1),- .., (i, jt) be any optimal traversal for
DFD. The Mean Discrete Fréchet Curve is defined (not uniquely) as

MDFC(Pv Q) = (pil + qjl)/za sy (pit + qjt)/2'

o @ = Curve P
— Curve Q
= Mean Frechet Curve

-1 0 1 2 3 4 5 6 7
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Mean of n curves

Definition
The Mean Discrete Fréchet Curve of a set of n curves is the curve that
minimizes the sum of DFD’s to all of them.

Compute exact Mean of n curves in O(m"), m = max curve length.

Approximate the Mean Discrete Fréchet Curve in O(nm?):
— Build complete binary tree, height h = |lg n], curves correspond to leaves
— At each node, compute Mean of two children in Post-Order Traversal.

— Mean curve corresponds to the root.

Now we can apply k-means for clustering.
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Outline

e Applications

@ Representation
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Complex shapes

@ Road segments, trajectories and Time-series (anomaly detection)

@ Representation of octapeptide, and Clustering: Euclidean vector of
backbone distances (276), or angles and distances (59).

@ Goal: 3D shapes, CAD models (the “Google of shapes”)
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Convolutional neural networks

[AlexNet'12]: 16% top-5 error on ImageNet, outperformed all by 10%
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Up to 38 Mil parameters, 450 KFlops, 600 KB storage.
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Inside CNN's
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Deep neural networks

— PointNet(++) [Guibas et al.] works on (local patches of) point clouds.
— DynamicGraphCNN: on edges of nearest neighbor graph of point cloud.
— SplineCNN treats B-splines and (adaptive) LR-splines.
—http://geometricdeeplearning.com/

input mlp (64,64) feature mlp (64,128,1024)
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— Deep CNN's identify and capture semantic information in a vector.
— These vectors can be considered in a standard (Euclidean) topology.

nx3

|.Emiris

Algorithms in Data science



	Clustering
	Vector spaces
	Metric spaces

	General Improvements
	IQ-means
	Number of clusters

	Applications
	Clustering of proteins
	Discretized curves
	Representation


