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Nearest Neighbor

Exact NN

Let us consider d-dimensional space D. Given set P ⊂ D, and query point
q ∈ D, its NN is point p0 ∈ P:

dist(p0, q) ≤ dist(p, q), ∀p ∈ P.

Approximate NN

Given set P ⊂ D, approximation factor 1 > ε > 0, and query point q,
an ε-NN, or ANN, is any point p0 ∈ P:

dist(p0, q) ≤ (1 + ε)dist(p, q), ∀p ∈ P.
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Approximate Near-neighbor problem

Definition ((r , c)-Near neighbor)

Preprocess: finite set of points P.
Query: point q, radius r , approximation factor c > 1, c = 1 + ε.

Range search: Report all p ∈ P s.t. dist(q, p) ≤ c · r .

Augmented decision problem (with witness):
– If ∃ p0 within radius r , output YES and any p : dist(q, p) ≤ c · r .
– If 6 ∃ p within radius c · r , then report NO.

If 6 ∃ p in the r -ball but ∃ point in the cr -ball, the algorithm reports either
YES, and some point p0 within radius c · r , or NO.
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NN reduces to Near-Neighbor

Lemma (Main)

Solving c(1 + ε)-ANN reduces to ((1 + ε)i , c)-Near-Neighbor decision
problems, for i = log1+ε ∆, . . . , 2, 1, where ∆ is the bounding radius.

Proof sketch. For any query, run ith and (i + 1)st decision problems:
– While both answers positive, continue with new radius (1 + ε)i−1.
– When answers differ, we obtain p0 within radius c(1 + ε)i+1, whereas
none exists within radius c(1 + ε)i .
– Balls cannot be both empty.
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NN reduces to Near-Neighbor (cont’d)

Theorem (Har-Peled,Indyk,Motwani’12)

For set P in a metric space, and prescribed parameters c > 1, δ � 1,
γ ∈ (1/n, 1), given a data structure solving the decision
(r , c)-Approximate Near Neighbor problem with failure probability δ, using
space S, and query time Q, there exists a data structure using

O(S log2 n/γ) space,

answering optimization ε-ANN, for ε = c(1 + O(γ)), with query time

O(Q log n)

and failure probability O(δ log n).

Replaces the dependence on the bounding radius by log n.
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NN in Rd

Exact NN:

Voronoi diagram = O(ndd/2e);

State of the art: kd-trees: Sp = O(dn), Query ' O(d · n1−1/d).

Hence the Curse of Dimensionality: Can we solve NN in poly-time in d
and faster than linear-time in n?

Approximate ε-NN:

BBD- and kd-tree yield optimal space = O(dn) and query
O((d/ε)d log n). Similar to AVD’s. [Arya,Mount et al.’94’98]

Locality sensitive hashing (LSH): Sp ' dn1+ρ, Q ' dnρ,
ρ = 1/(1 + ε)2 [Andoni,Indyk’08]. Extends to certain metric spaces.
Data-dependent: ρ = 1

2(1+ε)2−1 + o(1) [Andoni,Razenshteyn’14].

Projection-based methods: Sp = O∗(dn), Q ' dn1+ε
2/ lg ε

[E,Psarros,et al.15-17].
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Outline

1 Locality sensitive hashing
Hamming space
Euclidean space
Cosine similarity

2 Metric spaces
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LSH idea

Map similar strings to same bucket: increase collisions of similar strings

LSH Family

Let r1 < r2, probabilities p1 > p2. A family H of functions is
(r1, r2, p1, p2)-sensitive if, for any points p 6= q and any randomly selected
function h ∈R H,

if dist(p, q) ≤ r1, then prob[h(q) = h(p)] ≥ p1,

if dist(p, q) ≥ r2, then prob[h(q) = h(p)] ≤ p2.

Typically r2 = c · r1, c > 1.

Notation: h ∈R H means h is randomly cho-
sen (following the uniform distribution) from
H.
[Wikipedia]
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Amplification

Hash-table

LSH creates hash-table using (amplified) hash functions by concatenation:

g(p) = [h1(p) | h2(p) | · · · | hk(p)],

where every hi ∈R H is distributed uniformly (with repetition) in H.

This implies some hi may be chosen more than once for a given g or for
different g ’s.
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Construction

Preprocess

Having defined H and hash-function g :

Select L hashing functions g1, . . . , gL.

Initialize L hashtables, hash all points to all tables using g (or φ).

Large amplification k ⇒ larger gap between p1, p2. Practical choices are
k = 4 to 6, L may be 5 up to function of n, and HashTable size = O(n),
say n/4 (or n/8).
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Range Search

Range (r , c)-Near Neighbor search

Input: r , c, query q
for i from 1 to L do

for each item p in bucket gi (q) do
if dist(q, p) < cr then output p
end if

end for
end for

Decision problem: ”return p” instead of ”output p”.
At end ”return FAIL”; also FAIL after threshold on #examined points
reached.

In practice, if c not given assume c = 1.
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NN search

Approximate NN

Input: query q
Let b ←Null; db ←∞
for i from 1 to L do

for each item p in bucket gi (q) do
if large #checked items (e.g. > 3L) then return b // threshold
end if
if dist(q, p) < db then b ← p; db ← dist(q, p)
end if

end for
return b

end for

Theoretical bounds for c(1 + ε)-NN by reduction to ((1 + ε)i , c)-Neighbor
decision problems, i = 1, 2, . . . , lg1+ε ∆.
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Known LSH-able metrics

Hamming distance,

`2 (Euclidean) distance,

`1 (Manhattan) distance,

`k distance for any k ∈ [0, 2),

`2 distance on a sphere,

Cosine similarity,

Jaccard coefficient.

Recall `k norm: dist`k (x , y) = k

√√√√ d∑
i=1

|xi − yi |k .

[Andoni-Indyk:J.ACM’08]
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Outline

1 Locality sensitive hashing
Hamming space
Euclidean space
Cosine similarity

2 Metric spaces
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Hamming distance

Definition

Given strings x, y of length d, their Hamming distance dH(x , y) is the
number of positions at which x and y differ.

Example

Let x = 10010 and y = 10100. Then, dH(x , y) = 2.
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Definition of hash functions

Recall idea . Given x = (x1, . . . , xd) ∈ {0, 1}d :

H = {hi (x) = xi : i = 1, . . . , d}.

Obviously, |H| = d .
Pick uniformly at random h ∈R H: Then prob[h(x) 6= h(y)] = dH(x , y)/d ,

prob[h(x) = h(y)] = 1− dH(x , y)/d .

Corollary

The family H is (r1, r2, 1− r1/d , 1− r2/d)-sensitive, for r1 < r2.
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LSH in Hamming Space

However probabilities 1− r1/d , 1− r2/d can be close to each other.

Amplification

Given parameter k, define new family G by concatenation. G is the set of
all functions

g : {0, 1}d → {0, 1}k : g(x) = [hi1(x) | · · · | hik (x)],

where hij ∈R H is uniformly chosen for j = 1, . . . , k .

– We must have L < |G | = dk , so as to pick L different g ’s.
– The range of each g is [0, 2k), so k < lg n.
– So k should be close to lg n − 1 unlike later cases where k = 4, 5.
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Build Hash-tables

Build

Pick uniformly at random L functions g1, . . . , gL ∈R G , assuming
L < dk , by using random functions hi ∈R H (chosen uniformly with
repetition).
for i from 1 to L do

Initialize (one-dim) hash-table Ti of size 2k :
for each p ∈ P, store p in bucket gi (p).

end for

Complexity

Time to build: O(Lnk) H-function calls.
Space: L hashtables and n pointers to strings per table = O(Ln) pointers.
Also store n strings = O(dn) bits.
(r , c)-Neighbors: Query = O(L(k + d)), assuming O(1) strings per bucket.
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Outline

1 Locality sensitive hashing
Hamming space
Euclidean space
Cosine similarity

2 Metric spaces
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Euclidean Space

Recall: dist`2(x , y)2 =
∑d

i=1(xi − yi )
2.

Definition

Let d-vector v ∼ N (0, 1)d have coordinates identically independently
distributed (i.i.d.) by the standard normal (next slide).
Set ”window” w ∈ N∗ for the entire algorithm, pick single-precision real

t uniformly ∈R [0,w). For point p ∈ Rd , define:

h(p) = bp · v + t

w
c ∈ Z.

– Essentially project p on line of v , shift by t, partition in cells of length w
– Generally w = 4 is OK but should increase for range queries of large r
– Also k = 4 (but can go up to 10), and L may be 5 (up to 30).
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Normal distribution

Vector v ∼ N (0, 1)d has single-precision real coordinates distributed
according to the standard normal (Gaussian) distribution:

vi ∼ N (0, 1), i = 1, 2, . . . , d ,

with mean µ = 0, variance σ2 = 1 (σ is the standard deviation).

The bell curve:

I.Emiris (Athens, Greece) Algorithms in Data science
cHiPSet, Thessaloniki, 19 September 2018 21

/ 36



Normal from Uniform

Given uniform generator [Wikipedia]:

Marsaglia: Use independent uniform U,V ∈R (−1, 1), S = U2 + V 2.
If S ≥ 1 then start over, otherwise:

X = U

√
−2 lnS

S
, Y = V

√
−2 lnS

S

are independent and standard normally distributed.

The U,V ,X ,Y are single-precision reals.
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Hash-table

Indexing function g(p) = [h1(p)|h2(p)| . . . |hk(p)] would yield a
k-dimensional hashtable with many empty buckets. So we define φ instead:

1-dimensional hash-function

We build a 1-dim hash-table with classic index:

φ(p) = (r1h1(p) + r2h2(p) + · · ·+ rkhk(p) mod M) mod TableSize,

int ri ∈R Z, prime M = 231 − 1 if hi (p) are int, TableSize= n/2 (or n/4)

Notice φ computed in int arithmetic, if all hi (p), ri are int (≤ 32 bits).
Can have smaller TableSize= n/8 or n/16 (heuristic choice).
Recall (a + b) mod m = ((a mod m) + (b mod m)) mod m.
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Query acceleration

Store object ID along with pointer to object, for all bucket elements.

Object ID

For every p, store

ID(p) = r1h1(p) + r2h2(p) + · · ·+ rkhk(p) mod M.

Then indexing hash-function is φ(p) = ID(p) mod TableSize.

ID is locality sensitive: depends on w -length cells on the v -lines.
To avoid computing Euclidean distance to all elements in the bucket, do it
only for p: ID(p) =ID(q), assuming such p exists.
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Outline

1 Locality sensitive hashing
Hamming space
Euclidean space
Cosine similarity

2 Metric spaces
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LSH for Cosine similarity

Consider Rd , equipped with cosine similarity of two vectors:

cos(x , y) =
x · y
‖x‖ · ‖y‖

,

which expresses the angle between vectors x , y . Notice similarity is
opposite of distance: dist(x , y) = 1− cos(x , y).

For comparing documents or, generally, very long vectors (typically
sparse), based on direction only, not length.
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Hyperplane LSH

Definition

Let ri ∼ N (0, 1)d , with each real coordinate iid N (0, 1)d . Define

hi (x) =

{
1, if ri · x ≥ 0
0, if ri · x < 0

.

Then H = {hi (x) | for every ri} is a locality sensitive family.
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Hyperplane LSH (cont’d)

Intuition

Each ri is normal to a hyperplane. Two vectors lying on same side of many
hyperplanes are very likely similar.

Lemma

Two vectors match with probability proportional to their cosine.

Amplification: Given parameter k , define new family G by concatenation:

G = {g : Rd → {0, 1}k | g(x) = [h1(x) | h2(x) | · · · | hk(x)]}.
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Distance Measure

Definition (Distance Measure)

A distance measure d : D2 → R is a function that satisfies:

Non-negativity: d(x , y) ≥ 0

Isolation: x 6= y ⇔ d(x , y) > 0

Symmetry: d(x , y) = d(y , x)

Triangle inequality: d(x , y) ≤ d(x , z) + d(z , y)

It follows that d(x , x) = 0, and |d(x , z)− d(z , y)| ≤ d(x , y).

Example

Distances in vector spaces (e.g. Hamming, Euclidean, Manhattan, any `k
metric) are all distance measures. They moreover have compact
representation, could compute e.g. the mean or a total order.
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NN in Metric Spaces

Definition (Metric Space)

(D, d) is a metric space if D is a domain/set and d(·, ·) a distance
measure on D computing the dissimilarity of two objects in the
”database”. Typically the ”database” consists of P ⊂ D.

Definition (NN Search)

Consider metric space (D, d), and P ⊂ D, |P| = n: d(·, ·) is given as
function (oracle), or by a distance matrix |P| × |P|, and query points lie in
D or in P, respectively.
Problem: Build data-structure which, for any q, reports p0 ∈ P: ∀ p ∈ P,
(exact): d(q, p0) ≤ d(q, p).
(approximate): d(q, p0) ≤ (1 + ε)d(q, p), given approximation ε > 0.

I.Emiris (Athens, Greece) Algorithms in Data science
cHiPSet, Thessaloniki, 19 September 2018 31

/ 36



Motivation

Data cannot be handled by traditional techniques:

Complex objects do not have vector representation.

No intuitive linear sorting, e.g. sort colours wrt hue, when for a hue
its immediate neighbour is NOT the hue most similar to it.

Even with vector representation, the dimensionality of feature space is
so large that only distances can be computed.

Benefits of NN in metric spaces:

Sole option in numerous applications.

Comparable efficiency for specific domains and metric spaces.

High extensibility: a good algorithm for metric spaces has potential in
many different domains and types of queries.
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Distance Based Hashing (DBH)

LSH needs specific families of LSH functions, so it is not applicable to
novel, or not studied, metrics.

DBH produces hash functions tailored to the metric space by
considering only calls to the distance measure and by making no
assumptions about the domain.

Due to the generality of the method there are no theoretical
guarantees so the method is specified through sampling of the
dataset.

[Athitsos,et al.08]
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DBH family of functions

Consider metric space (D, d) and data P ⊂ D. Construct family of
functions H that behaves like LSH, but with no theoretical guarantee.

Definition (Line projection)

Given x1, x2 ∈ P ⊂ D define the line projection function

hx1,x2 : D → R : x 7→ d(x , x1)2 + d(x1, x2)2 − d(x , x2)2

2d(x1, x2)
.

If D is Euclidean, this is the signed distance of x ’s projection from x1 on
the line (x1, x2), where x2 lies on the positive semi-axis.
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Discretization and balancing

Definition (Discretization)

For hashing, discretize hx1,x2 by using thresholds t1, t2 ∈ R ∪ {±∞}:

hx1,x2t1,t2 : D → {0, 1} : x 7→
{

1, if hx1,x2(x) ∈ [t1, t2]
0, otherwise

The t1, t2 should map half the objects of P to 0 and the other half to 1:

Definition (Set of valid thresholds V )

For x1, x2 ∈ P, the set of thresholds yielding ”balanced” h is

V (x1, x2) = {[t1, t2] : probx∈P [hx1,x2t1,t2 (x) = 0] = 1/2}.
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Hash functions

Definition

Consider the ”balanced” functions

H = {hx1,x2t1,t2 : x1, x2 ∈ P and [t1, t2] ∈ V (x1, x2) }.

Using random hi ∈R H we define L hash functions by concatenation

gi (x) = [hi1(x) | hi2(x) | · · · | hik(x)], i = 1, . . . , L.

Implement:
– Pick x1, x2 ∈R P uniformly among points for which oracle/distance
matrix defined; this defines hx1,x2(·).
– Evaluate hx1,x2(x) ∈ R for all x ∈ P (or a large sample).
– Set t1 = median of {hx1,x2(x) : x ∈ P}, t2 =∞; or at the 1/4, 3/4 mark.
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