
Algorithms in Data science
Geometric random walks and Sampling

Ioannis Emiris

Dept Informatics & Telecoms, National Kapodistrian U. Athens
ATHENA Research & Innovation Center, Greece

INRIA Sophia-Antipolis France

Thessaloniki, 19 September 2018

Outline

Sampling
Simplex sampling
Uniform sampling

Volume Approximation
Polyhedra
Nonlinear bodies
Financial modeling

Oracles by ANN

R software

Uniform coordinates

Sample each coordinate and normalize is too naive.

Unit Simplex

Distinct uniform variables

1. Pick uniform distinct integers; then sort:
x0 = 0 ≤ x1 < · · · < xd ≤ xd+1 =M.

2. Point [yi = (xi − xi−1)/M : i = 1, . . . , d] is uniform.

Complexity = O(d logd) [Smith,Tromble’04].
Fastest for d < 80 using Bloom filter (rather than hashing).

Exponential random variables

1. Pick uniform xi ∈ (0, 1); set yi = − ln xi, i = 1, . . . , d+ 1.

2. Let T =
∑d+1
i=1 yi, then [y1/T, . . . , yd/T] is uniform.

Complexity = O(d) [Rubinstein,Melamed’98].

Arbitrary with vertices vi: x ∈ unit simplex,
∑d+1
i=1 xivi is uniform.

Outline

Sampling
Simplex sampling
Uniform sampling

Volume Approximation
Polyhedra
Nonlinear bodies
Financial modeling

Oracles by ANN

R software

Uniformly distributed points

I rejection shall not work: exponentially many points in
bounding cube / simplex but outside P.
Curse of dimensionality.

I for arbitrary polytopes we need random walks

e.g. grid walk, ball walk, shake-and-bake, hit-and-run.

Random Directions Hit-and-Run (RDHR)

P

x
B

`

Input: point x ∈ P and polytope P ⊂ Rd

Output: a new point in P

1. line ` through x, uniform on B(x, 1)

2. x is uniformly disrtibuted on P ∩ `
Perform W steps, return x.

Random Directions Hit-and-Run (RDHR)

P
`

x
Input: point x ∈ P and polytope P ⊂ Rd

Output: a new point in P

1. line ` through x, uniform on B(x, 1)

2. x is uniformly disrtibuted on P ∩ `
Perform W steps, return x.

Random Directions Hit-and-Run (RDHR)

P

`

x
Input: point x ∈ P and polytope P ⊂ Rd

Output: a new point in P

1. line ` through x, uniform on B(x, 1)

2. x is uniformly disrtibuted on P ∩ `
Perform W steps, return x.

I x ∼ uniformly distributed in P after W = O∗(d3) steps [LV’06]

Coordinate Directions Hit-and-Run (CDHR)

x

`

P

B

Input: point x ∈ P.

Output: a new point in P.

1. line ` through x, uniform on
{e1, . . . , ed}, ei = (. . . , 0, 1, 0, . . .)

2. x uniformly ∈ P ∩ `.

Coordinate Directions Hit-and-Run (CDHR)

x
`P Input: point x ∈ P.

Output: a new point in P.

1. line ` through x, uniform on
{e1, . . . , ed}, ei = (. . . , 0, 1, 0, . . .)

2. x uniformly ∈ P ∩ `.

Coordinate Directions Hit-and-Run (CDHR)

x

`

P
Input: point x ∈ P.

Output: a new point in P.

1. line ` through x, uniform on
{e1, . . . , ed}, ei = (. . . , 0, 1, 0, . . .)

2. x uniformly ∈ P ∩ `.
Perform W steps, return x.

“Continuous” grid walk: Converges to uniform, unknown mixing

Outline

Sampling
Simplex sampling
Uniform sampling

Volume Approximation
Polyhedra
Nonlinear bodies
Financial modeling

Oracles by ANN

R software

The problem

Input: H-polytope P := {x ∈ Rd | Ax ≤ b, A ∈ Rm×d, b ∈ Rm}

Output: Euclidean volume of P.

I #-P hard for vertex, halfspace representations [Dyer,Frieze’88]

A V-polytope is defined by vertices v1, . . . , vn ∈ Rd:
P := { λ1v1 + · · ·+ λnvn ∈ Rd | λ1 + · · ·+ λn = 1, λi ≥ 0}

Approximation

Given an H-polytope in Rd:

I no deterministic poly-time approximation has less than
exponential error [Elekes’86]; error ≤ d! [Betke,Henk’93]

I randomized poly-time approximation with high probability,
arbitrarily small error (fully polynomial-time randomized
approximation scheme - FPRAS), sampling and ball sequence
[DFKannan’91] in O∗(d23).

I Hit-and-Run sampling [KanLovSimon’97].

I O∗(d4m) [Lovász,Vempala’06] by simulated annealing
(adaptive sequence); if rounded O∗(d3m) [CousinsV’14].
Recently O∗(d2m2) [Lee,Vempala’17].

Implementations

Exact: do not scale to dimension > 15

Randomized:

I [Lovász,Deák’12] only in ≤ 10 dimensions.

I Matlab code by Cousins & Vempala based on [LV06]

I VolEsti: based on Sampling [E-Fisikopoulos]

I Hit-and-run in non-convex regions [Abbasi-Yadkori et al.’17]

Multiphase Monte Carlo (sequence of balls)

P0 = B(c, r)

B′ = B(c, ρ)

P

P1

I Cocentric balls B(c, 2i/d),
i = bd log rc, . . . , dd log ρe,
B(c, r) ⊂ P ⊂∼ B(c, ρ).

I Pi := P ∩ B(c, 2i/d).

Fraction of number of points in Pi
over that in Pi−1 approximates ratio
of volumes: vol(Pi)/vol(Pi−1) > 1.

vol(P) = vol(Pd log r)

dd log ρe∏
i=bd log rc+1

vol(Pi)

vol(Pi−1)
[DFK91]

Sandwiching

B = B(c, r)

B′ = B(c, ρ)

P

I compute max inscribed ball B(c, r) of P, by LP:
max r : Aix+ r‖Ai‖ ≤ bi, i = 1, . . . ,m

I compute a uniformly distributed p ∈ B(c, r); hit-and-run
generates N uniform points ∈ P

I ρ = max distance between c and N points: P ⊂∼ B(c, ρ)

Rounding (to isotropic position)

1. given set S of s uniformly distributed points ∈ P
2. compute (approximate) min-volume ellipsoid E covering S:
E/(1+ ε)d ⊂ CH(S) ⊂ E = {x : (x− c)TLTL(x− c) ≤ 1}

3. compute L mapping E to unit ball B: apply L to P

P

P ′

E

B

Iterate till ratio of max over min ellipsoid axis reaches threshold:
Efficiently handles skinny polytopes in practice.

Complexity

Theorem (Kannan,Lovász,Simonovits’97; Lovász’99)

Let B(c, r = 1) ⊆ P ⊆ B(c, ρ). The algorithm computes, with
probability ≥ 3/4, an estimate in [(1− ε)vol(P), (1+ ε)vol(P)], by

O∗(d4ρ2) = O∗(d5)

oracle calls with probability ≥ 9/10, where ρ = O∗(
√
d) by

isotropic sandwiching, and ε > 0 is fixed.

Runtime

I N = 400ε−2d logd random points per Pi
I each point computed after W ∼ 1011d3 walk steps

[E-Fisikopoulos]

I coordinate (vs. random) directions hit-and-run (CDHR):
boundary oracle in O(m).

I Set W = b10+ d/10c random walk steps, also in [LovDeák]:
achieves < 1% error in up to 100 dim, vs. ' 1011d3 steps.
Hence our algorithm takes O∗(md3) ops.

I sample partial generations of ≤ N points per ball ∩P, starting
from largest; saves constant fraction per ball.

I rounding in O∗(sd2) = O∗(d3) [Khachiyan’96]; k iterations in
O∗(k(md+ d3)), typically k = 1.

VolEsti software

I github.com/vissarion/volume_approximation

I C++, 2.5K lines

I CGAL for LP, min-ellipsoid; Eigen for linear algebra

I Google summer of code 2018: R interface.

github.com/vissarion/volume_approximation

Experimental results

I approximate the volume of polytopes (cubes, random, cross,
birkhoff) up to dimension 100 in < 2hrs with mean error < 1%

I estimate always in [(1− ε)vol(P), (1+ ε)vol(P)], for given ε,
d ≤ 100 (vs prob. 3/4 [KLS’97]), with W = Θ(d)

I CDHR faster and more accurate than RDHR

I Matlab code [CousinsVempala]: competitive in high dim

Runtime vs. dimension

0.1

1

10

100

1000

10000

0 10 20 30 40 50 60 70 80 90 100

Ti
m

e
(s

ec
)

Dimension d

10^(-5) d^{3.08} log^2(d)
product of simplices

cube-d
birkhoff

Performance on B5

accuracy (max−min)/µ (+), time N ·W = 105, . . . (levels)

0

10

20

30

40

50

10000 100000

R
an

do
m

 w
al

k
le

ng
th

 W

Number of random points N

100K
300K
600K
900K

1200K
1800K
2500K

2.103

0.522

0.426

0.364

0.397

0.300

0.262

0.287

1.015

0.475

0.434

0.301

0.308

0.305

0.252

0.279

0.975

0.368

0.246

0.262

0.196

0.243

0.215

0.189

0.610

0.289

0.208

0.177

0.165

0.156

0.140

0.172

0.427

0.229

0.174

0.142

0.111

0.085

0.114

Birkhoff polytopes

Bn = {x ∈ Rn×n | xij ≥ 0,
∑

i xij = 1,
∑

j xij = 1, 1 ≤ i, j ≤ n}:
perfect matchings of Kn,n, or Newton polytope of determinant.

n d estimate
asymptotic estimate

asympt.
exact

exact
asympt.[CanfieldMcKay09]

4 9 6.79E-002 7.61E-002 0.89194 6.21E-002 0.81593
5 16 1.41E-004 1.69E-004 0.83444 1.41E-004 0.83419
6 25 7.41E-009 8.62E-009 0.85987 7.35E-009 0.85279
7 36 5.67E-015 6.51E-015 0.87139 5.64E-015 0.86651
8 49 4.39E-023 5.03E-023 0.87295 4.42E-023 0.87786
9 64 2.62E-033 2.93E-033 0.89608 2.60E-033 0.88741

10 81 8.14E-046 9.81E-046 0.83052 8.78E-046 0.89555
11 100 1.40E-060 1.49E-060 0.93426 ? ?
12 121 7.85E-078 8.38E-078 0.93705 ? ?
13 144 1.33E-097 1.43E-097 0.93315 ? ?
14 169 5.96E-120 6.24E-120 0.95501 ? ?
15 196 5.70E-145 5.94E-145 0.95938 ? ?

All volumes in few hrs; exact V(B10) in ∼1 year [BeckPixton03].

Outline

Sampling
Simplex sampling
Uniform sampling

Volume Approximation
Polyhedra
Nonlinear bodies
Financial modeling

Oracles by ANN

R software

Ellipsoid

Need to generalize:

I Boundary oracle: solve univariate quadratic equation.

I Compute internal point, inscribed ball, enclosing ball.

I Define sequence of concentric balls: Stop when all rays first
hit the inscribed ball.

This, financial application in [Calès-Chalkis-E-Fisikopoulos,
SoCG’18]

Internal point

I Transform ellipsoid to sphere H0, transform simplex similarly.

I Find B(p, r) of max radius r, satisfying constraints:

dist(p,Hi) ≥ r⇔ aTi p+ bi ≥ r‖ai‖,

dist(p,H0) ≥ r⇔ ‖p− c0‖ ≤ r0 − r.
This is a Second Order Cone Program. In general, polytope
intersection with O(1) balls.

I Solved by SDP / interior-point method in poly-time.

I Inverse transform yields inscribed ellipsoid, maybe not max.
Center is good internal point.

I Get max inscribed ball by taking distance of p to Hi’s.

Non-convex nonlinear bodies

Two concentric ellipsoids intersect simplex.

I Hit-n-Run: ray may not intersect ellipsoid iff quadratic
equation yields only complex solutions.

I Sample simplex until interior point found. Define
ε-Chebyshev-ball. Enclosing ball contains a point sample.

I Decreasing ball sequence stops when rays first hit ε-ball.

Experimental Results:

I Works for d < 35 with same walk-length, #sample points.

I Runtime / accuracy competitive to convex region defined by
one ellipsoid.

I Open for d ≥ 35: fails to approximate volume in most cases

Outline

Sampling
Simplex sampling
Uniform sampling

Volume Approximation
Polyhedra
Nonlinear bodies
Financial modeling

Oracles by ANN

R software

Financial markets

Stock markets exhibit 3 types of behavior:

I Normal: slightly positive returns, moderate volatility.

I Up-market (bubbles): high returns, low volatility.

I Crises: strongly negative returns, high volatility.

The copula is a volatility-return probability distribution.
Figure: up-market and crisis: bubble burst in Sep. 2000.

Financial modeling

I Portfolios of d+ 1 assets represented by simplex ∆d ⊂ Rd+1.
I For portfolio ω ∈ ∆d, returns R ∈ Rd+1, total return
f(ω,R) = RTω is linear combination of returns.

I Cross-sectional score of portfolio ω∗ is vol(∆∗)/vol(∆d) s.t.

∆∗ = {ω ∈ ∆d : f(ω,R) ≤ f(ω∗, R)}.

Score corresponds to cumulative distribution of f(ω,C).

I Volatility is quadratic form of returns.

Families of constraints

I Let Rij be the return at day i of asset j. Consider compound
returns over k days starting at day i: define (d+ 1)-vector v
whose j-th coordinate, j = 1, . . . , d+ 1, equals

vj = (1+ Ri,j)(1+ Ri+1,j) · · · (1+ Ri+k−1,j) − 1.

Normal vector v defines family of hyperplanes.

I Volatility requires estimation of the returns’ variance –
covariance matrix, yielding concentric ellipsoids.

I Copula populated by intersecting ∆d along asset
characteristics: Hyperplane families normal to two compound
vectors, or to one vector and concentric ellipsoids.

Formula for single halfspace

Let H : aTx ≤ a0, a = (a1, . . . , ad), let S be the unit simplex.

1. Let yi = ai − a0 if ≥ 0, i = 1, . . . , K,
xi = ai − a0 if < 0, i = 1, . . . , J, s.t. J+ K = d.

2. Initialize A0 = 1,A1 = · · · = AK = 0.

3. For j = 1, . . . , J do:

Ak ←− ykAk − xjAk−1
yk − xj

, k = 1, . . . , K.

For j = J,
AK = vol(S ∩H) / vol(S).

Complexity = O(d2) [Varsi’73,Ali’73,Gerber’81].

Simple polytopes

Simple P; c ∈ Rd, q ∈ R s.t. cTx+ q not constant on any edge.
For vertex v, Av = d× d matrix: columns are hyperplanes by v.

Let γv s.t. Avγv = c, then

vol(P) =
1

d!

∑
v

(cTv+ q)d

|detAv|
∏d
i=1 γ

v
i

.

Complexity ' d3#vertices [Lawrence’91], using V-rep, H-rep.
Open: pick c to avoid cTx+ q being nearly constant on edge:
causes instability. Thus use exact operations for d > 30.

Constant number of hyperplanes

Unit simplex intersected by sufficiently generic hyperplanes =
simple polytope; constant h = #hyperplanes ⇒ formula in O(d3):

“Worst-case” vertex belongs to h hyperplanes
∑
i cijxj = ci0,∑

i xi = 1, and d− h− 1 hyperplanes xi = 0; up to permutation:

Av =



1 1 c11 · · · ch1
. . .

...
...

...

1
...

...
...

...
...

...
1 c1d · · · chd


Linear solve = O(d), detAv in O(1), #vertices = O(d2).

Outline

Sampling
Simplex sampling
Uniform sampling

Volume Approximation
Polyhedra
Nonlinear bodies
Financial modeling

Oracles by ANN

R software

Polytope Oracles

Membership oracle

Given point y ∈ Rd, return yes if y ∈ P otherwise return no.

Boundary oracle

Given y ∈ P, ray ` through y, return points ` ∩ ∂P.

P P

y

`

y

Approximation

Given is polytope P ⊂ Rd and approximation parameter ε ∈ (0, 1):

Definition (Approximate Polytope Membership)

Preprocess P into data-structure so that, given query point q,
decide whether q ∈ P or not. If d(q, ∂P) ≤ ε · diam(P) the data
structure can answer either way.

Definition (Approximate Polytope Boundary)

Preprocess P into data-structure so that given query ray r
emanating from y ∈ P, compute point r∗, s.t.

r∗ ∈ r and d(r∗, ∂P) ≤ ε · diam(P).

Previous approaches have complexity exponential in d.

Reduction

Exact setting [Aurenhammer’87]

Let P ⊂ Rd have n facets. ∀p∗ ∈ P \ ∂P, compute set S of n
points: membership of q reduces to finding its Nearest Neighbor in
S ∪ {p∗}

Let P−ε = {x ∈ P | d(x, ∂P) > ε · diam(P)} 6= ∅.

Approximate Membership reduces to εANN on S ∪ {p∗}, p∗ ∈ P−ε.

Theorem (Complexity)

We answer Approximate Membership queries in O∗(dnρ+o(1)),
using O∗(n1+ρ+o(1) + dn) space, whp, where ρ ≤ 1/(1+ 4ε2) < 1.

[Anagnostopoulos-E-Fisikopoulos’17]

Approximate Boundary Oracle

1. Compute t1 /∈ P, t1 ∈ r, where r is ray shooting query.

2. For ti 6∈ P, iteratively compute ti+1 closer to apex:
I Let pi be nearest neighbor of ti.
I Let Hi be hyperplane supporting facet Fi defining pi.
I Then ti+1 = Hi ∩ r.

3. Terminate by checking (approximate) membership oracle.

Approximate version may get stuck in local “optimum”: If ti does
not decrease distance to apex, set
ti := (ti−1 − r.apex) − r.unitdir · ε.

Membership experiments, and Outlook

0
1000

200

400

800

s
e

c
o

n
d

s

600

800

600
1000000

Dimension

1000

900000800000400 700000600000

Number of points

500000200 4000003000002000001000000 0

Brute-force approach

Appx. Memb. Oracle

Approximate Boundary similarly fast but inaccurate.

Application: Polytope sampling, Volume
estimation in d ≥ 600 for (non)convex
(non)linear bodies: various applications, e.g.
financial modeling

Outline

Sampling
Simplex sampling
Uniform sampling

Volume Approximation
Polyhedra
Nonlinear bodies
Financial modeling

Oracles by ANN

R software

VolEsti 2018

I VolEsti is a C++ library for sampling and volume
approximation of convex bodies (e.g. polytopes) with an R
interface [Chalkis].

I VolEsti can be used to
(a) generate some well known polytopes (cubes, simplices,
cross-polytopes, zonotopes),
(b) compute approximation of volumes,
(c) sample from convex polytopes approximating uniform or
spherical gaussian distribution.

Installation

I Get the R interface of VolEsti at
https://github.com/TolisChal/volume_

approximation/tree/volesti_tutorial

I Download the zipfile from github and extract it locally.

I Open with Rstudio file volesti.Rproj in folder /R-proj.

I At the Build menu, click ”build source Package”, then click
”Build and Reload”.

I More instructions in instructions.txt in folder /R-proj.

https://github.com/TolisChal/volume_approximation/tree/volesti_tutorial
https://github.com/TolisChal/volume_approximation/tree/volesti_tutorial

Examples

1. Generate a d-dimensional cube in H-rep:
> cube = GenCube(d, ′H ′)

2. Sample 1000 points in cube using CDHR, W = b10+ 10/dc:
> P = sample points(A = cube$A, b = cube$b,N = 1000)

3. Approximate the volume of cube using RDHR, W = 20,
> vol = volume(A = cube$A, b = cube$b,walk length =
20, coordinate = FALSE)

More examples in instructions.txt in folder /R-proj.

Tests

I Test Coordinate Directions Hit-and-Run vs d. Consider a
constant number of sampled points N for a family of
polytopes (e.g. d-dim cubes). Check runtime as d increases.

I Test CDHR efficiency vs N. Fix d and vary N.

I Compare CDHR with Random Directions Hit-and-run: For a
family of polytopes, run both schemes and compare runtimes.

I Test volume approximation: For a family of polytopes, run
CDHR as N,d vary: check accuracy vs runtime.

I Compare CDHR with RDHR on volume: For a family of
polytopes, run both and compare volumes and runtimes.

Set flag verbose=TRUE.

Peacock test

I It generalizes, for 2d and 3d samples, the Kolmogorov-Smirnov
test, a non-parametric test for comparing two samples.

I The null hypothesis (output 0) is that the two samples are
drawn from the same distribution, otherwise the test returns
(close to) 1.

I To install package Peacock.test, run in Rstudio:
> install.packages("Peacock.test")
> library("Peacock.test") #activation

I Peacock.test offers functions peacock2(x,y) and
peacock3(x,y), for 2d and 3d samples: x, y are N× d
matrices.

Test samples

1. Use sample simplex() to sample N=100 uniform points
from the 3-dimensional simplex.
Use GenSimplex() to generate a 3d simplex, and
sample points() to sample N=100 points using CDHR.
How is the value of the Peacock test varying with
walk length?

2. Construct a 2d skinny simplex (triangle) and use
sample simplex() to sample uniform points.
Repeat (1) with N=100 by passing skinny simplex to
sample points().
Solutions in sampling tutorial.R.

Thank you!
Learning and Analysing

Massive / Big DAta
(M.S.Curie, RISE, H2020)

Algebraic Representations for
Computer-Aided Design of

complEx Shapes
(M.S.Curie ITN, H2020)

Random Walk for Fast,
Geometry-agnostic IC modeling

(Ministry of Development)

Test skinny polytopes

From sampling tutorial.R.

V = matrix(c(0, 0, 0, 7, 100, 0), ncol = 2, nrow = 3, byrow = TRUE)

yields #V-rep of 2d skinny simplex.

A = matrix(c(−1, 0, 0,−1, 0.07, 1), ncol = 2, nrow = 3, byrow = TRUE)

yields #H-rep of skinny cube.

sample1 = sample simplex(vertices=V, N=100)
sample2 = sample points(A=A,b=c(0,0,7),N=100,walk length=1)
or: sample2=sample points(V=V,N=100,walk length=1)

	Sampling
	Simplex sampling
	Uniform sampling

	Volume Approximation
	Polyhedra
	Nonlinear bodies
	Financial modeling

	Oracles by ANN
	R software

