chiPSet Training School, September 2017, Novi Sad, Serbia

17 cHiPSet

Scost

Big Data Analytics with
Apache

S'porl(

Apostolos N. Papadopoulos (Associate Prof.)

(;)
Data Science & Engineering Lab
Department of Informatics, Aristotle University of Thessaloniki, GREECE

mailto:papadopo@csd.auth.gr
http://datalab.csd.auth.gr/~apostol

Outline

What Is Spark?

Basic features

Resilient Distributed Datasets (RDDs) and DataFrames
Existing libraries

Examples in Scala & Python

Further reading

FUNDAMENTAL
CONCEPTS

What Is Spark ?

In brief, Spark is a UNIFIED platform for cluster computing, enabling efficient big

data management and analytics.

It is an Apache Project and its current release is{2.2.0 (July 11, 2017)

previous release 2.1.1 (March 2, 2017)

It is one of the most active Apache projects:

1.0.0
1.0.1
1.0.2
1.1.0
1.1.1
1.2.0
1.2.1
1.3.0
1.3.1
1.4.0

May 30, 2014

July 11, 2014
August 5, 2014
September 11, 2014
November 26, 2014
December 18, 2014
February 9, 2014
March 13, 2015
April 17, 2015

June 11, 2015

1.4.1
1.5.0
1.5.1
1.5.2
1.6.0
1.6.1
1.6.2
2.0.0
2.0.1
2.0.2

- July 15, 2015 2.1.0 - December 28, 2016
- September 9, 2015 2.1.1 - March 2, 2017

- October 2, 2015

- November 9, 2015

- January 4, 2016

- March 9, 2016

- June 25, 2016

- July 26, 2016

- October 3, 2016

- November 14, 2016

Who Invented Spark ?

Born in Romania

University of Waterloo (B.Sc. Mathematics, Honors Computer Science)
Berkeley (Ph.D. cluster computing, big data)

Now: Assistant Professor @ CSAIL MIT

Matei Zaharia

He also co-designed the MESOS cluster
manager and he contributed to Hadoop
fair scheduler.

Who Can Benefit from Spark ?

Spark is an excellent platform for:

- Data Scientists: Spark's collection of data-focused tools helps data
scientists to go beyond problems that fit in a single machine

- Engineers: Application development in Spark is far more easy than other
alternatives. Spark's unified approach eliminates the need to use many
different special-purpose platforms for streaming, machine learning, and
graph analytics.

- Students: The rich API provided by Spark makes it extremely easy to learn
data analysis and program development in Java, Scala or Python.

- Researchers: New opportunities exist for designing distributed algorithms
and testing their performance in clusters.

Spark In the Hadoop Ecosystem

Ambari

(Provisioning, Management, Monitoring)

ZooKeeper
(Coordination)
Oozie
(Workflow & Scheduling)
(uonelibalu| ereq)
doobg

Spark is somewhere here

Spark vs Hadoop MR: sorting 1PB

-

Spark 1PB \

\f\telnode

Hadoop Spark 100TB
Data Size 102.5TB 100 TB 1000 TB
Elapsed Time 72 mins 23 mins 234 mins
Nodes 2100 206 190
Cores 50400 6592 6080
Reducers 10,000 29,000 250,000
Rate 1.42 TB/min 4.27 TB/min 4.27 TB/min
0.67 GB/min 20.7 GB/min

22.5 GB/min /

Source: Databricks

Spark Basics

Spark is designed to be fast and general purpose.

The main functionality is implemented in Spark Core. Other
components exist, that integrate tightly with Spark Core.

Benefits of tight integration:

- Improvements in Core propagate to higher components
- it offers one unified environment

10

Spark Basics: architecture

APIS

[’Scala ((java A pqthon

SQL
and MLIib GraphX LIBS
DataFrames

INPUT/OUTPUT CLUSTER MANAGER

Spark Basics: libraries

Currently the following libs exist and they are evolving
really-really fast:

- SQL Lib

- Streaming Lib

- Machine Learning Lib (MLlIlib)
- Graph Lib (GraphX)

We outline all of them but later we will cover some details
about MLIib and GraphX

12

Spark SQL

Spark SQL is a library for querying structures datasets as well as
distributed datasets.

Spark SQL allows relational queries expressed in SQL, HiveQL, or
Scala to be executed using Spark.

Example:

hc = HiveContext(sc)

rows = hc.sql(”“select id, name, salary from emp”)
rows.filter(lambda r: r.salary > 2000).collect()

13

Spark Streaming

Spark Streaming is a library to ease the development of
complex streaming applications.

Data can be inserted into Spark from different sources
like Kafka, Flume, Twitter, ZeroMQ, Kinesis or TCP
sockets can be processed using complex algorithms
expressed with high-level functions like map, reduce,
join and window.

14

Spark MLIib & ML

MLlIlib is Spark's scalable machine learning library.
Two APIs: the RDD API and the DataFrame API.
Some supported algorithms:

> linear SVM and logistic regression

» classification and regression tree

> k-means clustering

~ recommendation via alternating least squares

> singular value decomposition (SVD)

> linear regression with L1- and L2-regularization

—
£
oh]
E
]
{=)]
=
=
=
=
o

> multinomial naive Bayes
- basic statistics

> feature transformations

15

Spark GraphX

GraphX provides an API for graph processing and graph-parallel algorithms on-top of
Spark.

The current version supports:

> PageRank
> Connected components

Runtime (s)

» Label propagation
> SVD++
» Strongly connected components

> Triangle counting
> Core decomposition

RESILIENT
DISTRIBUTED
DATASETS

17

Resilient Distributed Datasets (RDDs)

Data manipulation in Spark is heavily based on RDDs. An RDD is
an interface composed of:

-~ a set of partitions

- a list of dependencies

>~ a function to compute a partition given its parents
> a partitioner (optional)

-~ a set of preferred locations per partition (optional)

Simply stated: an RDD is a distributed collections of items. In particular:

an RDD is a read-only (i.e., iInmutable) collection of items partitioned
across a set of machines that can be rebuilt if a partition is destroyed.

18

Resilient Distributed Datasets (RDDs)

The RDD is the most fundamental concept in
Spark since all work in Spark Is expressed as:

- creating RDDs
- transforming existing RDDs
- performing actions on RDDs

19

Creating RDDs

Spark provides two ways to create an RDD:

- loading an already existing set of objects
- parallelizing a data collection Iin the driver

20

Creating RDDs

// define the spark context
val sc = new SparkContext(...)

// hdfsRDD is an RDD from an HDFS file
val hdfsRDD = sc.textFile("hdfs://...")

// localRDD is an RDD from a file in the local file system
val localRDD = sc.textFile('"localfile.txt")

// define a List of strings

val myList = List("this", "is", "a", "list", "of", "strings")
// define an RDD by parallelizing the List

val 1istRDD = sc.parallelize(myList)

21

RDD Operations

There are transformations on RDDs that allow us to create
new RDDs: map, filter, groupBy, reduceByKey,
partitionBy, sortByKey, joiln, etc

Also, there are actions applied in the RDDs: reduce,
collect, take, count, saveAsTextFile, etc

Note: computation takes place only in actions and not on
transformations! (This is a form of lazy evaluation. More on
this soon.)

RDD Operations: transformations

val inputRDD =

sc.textFile("myfile.txt")

// lines containing the word “apple”

val applesRDD

inputRDD.filter(x => x.contains("apple"))

// lines containing the word “orange”

val orangesRDD

= inputRDD.filter(x => x.contains("orange"))

// perform the union

val aoRDD = applesRDD.union(orangesRDD)

23

RDD Operations: transformations

Graphically speaking:

filter
union

fllter

24

RDD Operations: actions

An action denotes that something must be done

We use the action count () to find the number of lines in
unionRDD containing apples or oranges (or both) and
then we print the 5 first lines using the action take ()

val numLines = unionRDD.count()
unionRDD. take(5).foreach(println)

25

The benefits of being lazy

1. more optimization alternatives are possible if we see the big picture
2. we can avoid unnecessary computations

EX:
Assume that from the unionRDD we need only the first 5 lines.

If we are eager, we need to compute the union of the two RDDs, materialize
the result and then select the first 5 lines.

If we are lazy, there is no need to even compute the whole union of the two
RDDs, since when we find the first 5 lines we may stop.
26

Lazy Evaluation

At any point we can force the execution of
transformation by applying a simple action such
as count (). This may be needed for
debugging and testing.

27

Basic RDD Transformations

Assume that our RDD contains the list{1, 2, 3}.

map () rdd.map(x => x + 2) {3,4,5}
flatMap() rdd.flatMap(x => List(x-1,x,x+1)) {0,1,2,1,2,3,2,3,4}
filter() rdd.filter(x => x>1) {2, 3}
distinct() rdd.distinct() {1, 2,3}
sample() rdd.sample(false,0.2) non-predictable

28

Two-RDD Transformations

These transformations require two RDDs

union() rdd.union(another)
intersection() rdd.intersection(another)
subtract() rdd.substract(another)

cartesian() rdd.cartesian(another)

29

collect()
count()
countByValue()
take()

top()

reduce()

foreach()

Some Actions

rdd
rdd
rdd
rdd

rdd.
rdd.

rdd

.collect() {1,2,3}
.count() 3
.countByVvalue() {(1,1),(2,1),(3,1)}
.take(2) {1, 2}
top(2) {3,2}
reduce((x,y) => x+y) 6
.foreach(func)

30

DIRECTED
ACYCLIC
GRAPHS

RDDs and DAGS

A set of RDDs corresponds is transformed to a
Directed Acyclic Graph (DAG)

Input: RDD and partitions to compute

Output: output from actions on those partitions

Roles:

>

>
>
>

Build stages of tasks

Submit them to lower level scheduler (e.g. YARN, Mesos, Standalone) as ready
Lower level scheduler will schedule data based on locality

Resubmit failed stages if outputs are lost

32

DAG Scheduling

‘} ‘ filter
/ |

DAG Scheduling

h 4

(o
i

A 4

A

RDD objects

A.join(B).filter(...).filter(...)

DAG scheduler

split graph into stages of tasks
submit each stage

34

Distributed Execution In Spark

Outline of the whole process:

1. The user submits a job with spark-submit.

2. spark-submit launches the driver program and invokes the main() method
specified by the user.

3. The driver program contacts the cluster manager to ask for resources to launch
executors.

4. The cluster manager launches executors on behalf of the driver program.

5. The driver process runs through the user application. Based on the RDD actions
and transformations in the program, the driver sends work to executors in the

form of tasks.

6. Tasks are run on executor processes to compute and save results.

7. If the driver’s main() method exits or it calls SparkContext.stop() , it will
terminate the executors and release resources from the cluster manager.

35

Under the Hood

TENCE §t@y
Wgn@'f@ I

o2

Persistence

In many cases we want to use the same RDD multiple times
without recomputing it.

EX:

val result = rdd.map(x => x+1)
println(result.count())
println(result.collect().mkString(","))

We can ask Spark to keep (persist) the data.

38

Persistence

val result = rdd.map(x => x+1)
result.persist(StorageLevel.DISK ONLY)
println(result.count())
println(result.collect().mkString(","))

Persistence levels:

MEMORY_ONLY

MEMORY_ONLY_SER (objects are serialized)
MEMORY_AND_DISK

MEMORY_AND_DISK_SER (objects are serialized)
DISK_ONLY

If we try to put to many things in RAM Spark starts flushing data to disk using a Least Recently Used policy.

39

BROADCAST VARIABLES
AND vy
ACCUMULATORS Iﬂ@ g

40

Broadcast Variables

“Broadcast variables allow the programmer to keep a read-only variable
cached on each machine rather than shipping a copy of it with
tasks. They can be used, for example, to give every node a copy of a
large input dataset in an efficient manner. Spark also attempts to
distribute broadcast variables using efficient broadcast algorithms to
reduce communication cost.” (source: Apache Spark website)

> A piece of information is broadcasted to all executors.

~ Broadcast variables are set by the driver and are read-only by the
executors.

> Very useful feature to avoid sending large pieces of data again and
again.

41

Broadcast Variables

>

val r = scala.util.Random

val vector = Array.fi111(1000){r.nextInt(99)}

val rdd = Array.fi111(1000000){r.nextInt(99)}.parallelize
val bvector = sc.broadcast(vector)
e

rdd.map(x => vector.contains(x))

rdd.map(x => bvector.value.contalns(x))
AN

/

42

Accumulators

The value of an accumulator can be modified by
any executor (shared variable).

No special protection is required, Spark takes
care of this.

Executors can only write to the accumulator.

They cannot read the value of the accumulator.

The value of an accumulator can be read by the
driver only.

43

Why DataFrames ?

From Apache Spark documentation:

“A DataFrame Is a dataset organized into named
columns. It is conceptually equivalent to a table In
a relational database or a data frame in R/Python,
but with richer optimizations under the hood.”

Important: DataFrames are structured!

45

Using DataFrames

import org.apache.spark.sql.SparkSession

val spark_session = SparkSession

.builder ()

.appName ("Spark SQL basic example")
.config("spark.some.config.option", "some-value")
.get0rCreate ()

// For implicit conversions like converting RDDs to DataFrames

import spark.implicits. _

46

Using DataFrames

// Create a DataFrame drom a json file

val df = spark session.read.json("examples/src/main/resources/people.json")

// Create a DataFrame from a csv file

val df = spark session.read.option("header", "false").csv("reviews.csv")

// Show the first few lines of the DataFrame

df .show ()

// Print the schema of the DataFrame

df .printSchema ()

47

Using DataFrames

// Selection operation

val resdf = df.select($"name", $"age" + 1)

// SQL query passed as a string

val resdf = spark.sql("SELECT name, age FROM people
WHERE age BETWEEN 13 AND 19")

48

Spark Simple Examples

Spark supports
~ Java
“ R
“ Python
~ Scala

We are going to use the Scala API in this lecture. We will play with
Spark Core component and also run examples of MLIib and
GraphX libraries that are very relevant to Graph Data Mining.

Also, some Python examples will be discussed.

49

import org.apache.spark.S
import org.apache.spark.Spar
import org.apache.spark.S

Hello Spark

oar

Dar

object HelloSpark {
def main(args: Array[String]): Unit =

¥

println("Hello, Spark!'™)

things we

must
import

KContext
KContext._

KConf

{

51

WordCount

import org.apache.spark.SparkContext._
import org.apache.spark.{SparkConf, SparkContext}

object WordCount {
def main(args: Array[String]): Unit = {

val sparkConf = new SparkConf().setMaster("local[2]").setAppName("WordCount") // config
val sc = new SparkContext(sparkConf) // create spark context

val currentDir = System.getProperty("user.dir") // get the current directory
val inputFile = "file://" + currentDir + "/leonardo.txt"

val outputDir = "file://" + currentDir + "/output"

val txtFile = sc.textFile(inputFile)

txtFile.flatMap(line => line.split("™ ")) // split each line based on spaces
.map(word => (word,1)) // map each word into a word,1 pair
.reduceByKey(_+_) // reduce
.saveAsTextFile(outputDir) // save the output

sc.stop()

WordCount in Hadoop

import java.util.*; public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();

import org.apache.hadoop.fs.Path; Job job = new Job(conf, "wordcount");

import org.apache.hadoop.conf.*; job.setOutputKeyClass(Text.class);

import org.apache.hadoop.io.*; job.setOutputvalueClass(IntWritable.class);

import org.apache.hadoop.mapreduce.*; job.setMapperClass(Map.class);

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; job.setReducerClass(Reduce.class);

import org.apache.hadoop.mapreduce.lib.input.TextInputFormat; job.setInputFormatClass(TextInputFormat.class);
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; job.setOutputFormatClass(TextOutputFormat.class);

import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

] FileInputFormat.addInputPath(job, new Path(args[0]));
public class wordCount { FileOutputFormat.setOutputPath(job, new Path(args[1]));

public static class Map extends Mapper<LongWritable, Text, Text,
IntWritable> {

private final static IntWritable one = new IntWritable(1);

job.waitForCompletion(true);

private Text word = new Text();

public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException { }

String line = value.toString();

StringTokenizer tokenizer = new StringTokenizer(line);

while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());
context.write(word, one);

public static class Reduce extends Reducer<Text, IntWritable, Text,
IntWritable> {

public void reduce(Text key, Iterable<IntWritable> values, Context
context)

throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}

context.write(key, new IntWritable(sum));

PageRank

object PageRank {

def main(args: Array[String]) {
val iters = 10 // number of iterations for pagerank computation
val currentDir = System.getProperty("user.dir") // get the current directory
val inputFile = "file://" + currentDir + "/webgraph.txt"
val outputDir = "file://" + currentDir + "/output"

val sparkConf new SparkConf().setAppName("PageRank")
val sc = new SparkContext(sparkConf)

val lines = sc.textFile(inputFile, 1)

val links = lines.map { s => val parts = s.split("\\s+")(parts(®), parts(1))}.distinct().groupByKey().cache()

var ranks links.mapValues(v => 1.0)
for (i <- 1 to iters) {
println("Iteration: " + 1)

val contribs = links.join(ranks).values.flatMap{ case (urls, rank) => val size = urls.size urls.map(url =>
(url, rank / size)) }

ranks = contribs.reduceByKey(_ + _).mapValues(0.15 + 0.85 * _)

val output = ranks.collect()

output.foreach(tup => println(tup._1 + " has rank: " + tup._2 + "."))

sc.stop()

More on MLIib

MLIib provides some additional data types common In
Machine Learning

Vector (a math vector, either sparse or dense)
LabeledPoint (useful in classification and regression)
Rating (useful in recommendation algorithms)
Several Models (used in training algorithms)

56

SVD with MLIIb

import org.apache.spark.mllib.linalg.Matrix
import org.apache.spark.mllib.linalg.distributed.RowMatrix

import
org.apache.spark.mllib.linalg.SingularValueDecomposition

val mat: RowMatrix =

// Compute the top 20 singular values and corresponding singular vectors.

val svd: SingularValueDecomposition[RowMatrix, Matrix] =
mat.computeSvD(20, computeU = true)

val U: RowMatrix = svd.U // The u factor is a RowMatrix.
val s: Vector = svd.s // The singular values are stored in a local dense vector.

val V: Matrix = svd.V // The v factor is a local dense matrix.

57

More on GraphX

The basic concept in GraphX is the property graph

The property graph is a directed multigraph with user
defined objects attached to each vertex and edge.

GraphX optimizes the representation of vertex and edge
types when they are plain old data-types (e.g., int)
reducing in memory footprint by storing them In
specialized arrays.

58

More on GraphX

Data-Parallel

Graph-Paralle

L R T Y
-y Pl R R

RAPH

e
Pregel GraphlLab ™ &

Property Graph

“While graph-parallel systems are optimized for iterative diffusion algorithms like
PageRank they are not well suited to more basic tasks like constructing the graph,
modifying its structure, or expressing computation that spans multiple graphs”

Source: http://ampcamp.berkeley.edu

More on GraphX

This means that for some tasks Spark may not show
the best performance in comparison to other
dedicated graph processing systems.

EX:
PageRank on Live-Journal network (available @snap)

GraphLab is 60 times faster than Hadoop
GraphLab is 16 times faster than Spark

60

More on GraphX

Preprocessing

Compute

-Lm.J

[)ma

Inltlal
Graph

Source: http://spark.apache.org

Subgraph

" A,

ol =
GraphlLab®

Compute

PageRank

61

More on GraphX

To use GraphX we need to import

import org.apac

import org.apac
import org.apac

ne.Spar

ne.spar

ne.spar

K.grap

K.rdd.

NX.

RDD

62

val vertexArray

= Array(

(1L, ("Alice", 28)),

(2L, ("Bob",

27)),

(3L, ("Charlie", 65)),
(4L, ("David", 42)),
(5L, ("Ed", 55)),

(6L, ("Fran'", 50))

)

val edgeArray = Array(

Edge(2L, 1L,
Edge(2L, 4L,
Edge(3L, 2L,
Edge(3L, 6L,
Edge(4L, 1L,
Edge(5L, 2L,
Edge(5L, 3L,
Edge(5L, 6L,
)

7))
2),
4),
3),
1),
2),
8),
3)

More on GraphX

Source: http://ampcamp.berkeley.edu

63

More on GraphX

Parallelizing nodes and edges

val vertexRDD: RDD[(Long, (String, Int))] =
sc.parallelize(vertexArray)

val edgeRDD: RDD[Edge[Int]] =
sc.parallelize(edgeArray)

Now we have vertexRDD for the nodes and edgeRDD for
the edges.

64

More on GraphX

Last step: define the graph object

val graph: Graph[(String, Int),
= Graph(vertexRDD, edgeRDD)

Int]

65

PageRank with GraphX

object PageRank {

def main(args: Array[String]): Unit = {

val
val
val
val

val

conf = new SparkConf().setAppName("PageRank App")
sc = new SparkContext(conf)

currentDir = System.getProperty("user.dir")
edgeFile = "file://" + currentDir + "/followers.txt"
graph = GraphLoader.edgelListFile(sc, edgeFile)

// run pagerank

val

ranks = graph.pageRank(0.0001).vertices

println(ranks.collect().mkString("\n")) // print result

66

Connected Components

This graph has two connected components:
ccl={1, 2, 4}

cc2={3,5, 6, 7} Output:
(1,1) (2,1) (4,1)
(3,3) (5,3) (6,3) (7,3)

67

Connected Components

object ConnectedComponents {

def main(args: Array[String]): Unit = {

val conf = new SparkConf().setAppName("ConnectedComponents
App")
val sc = new SparkContext(conf)

val currentDir = System.getProperty("user.dir")
val edgeFile = "file://" + currentDir + "/graph.txt"

val graph = GraphLoader.edgelListFile(sc, edgeFile)

// find the connected components
val cc = graph.connectedComponents().vertices

println(cc.collect().mkString("\n")) // print the result

Counting Triangles

Triangles are very important in Network Analysis:

- dense subgraph mining (communities, trusses)
- triangular connectivity
- network measurements (e.g. clustering coefficient)

Example

69

Counting Triangles

object TriangleCounting {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("TriangleCounting App")
val sc = new SparkContext(conf)

val currentDir = System.getProperty("user.dir")
val edgeFile = "file://" + currentDir + "/enron.txt"

val graph = GraphLoader
.edgelListFile(sc, edgeFile, true)

.partitionBy(PartitionStrategy.RandomVertexCut)

// Find number of triangles for each vertex
val triCounts = graph.triangleCount().vertices

println(triCounts.collect().mkString("\n"))

Spark SQL Example

We have a JSON file (planets. json) containing
Information about the planets of our solar system

{"name" :
{"name":
{"name":
{"name" :
{"name":
{"name":
{"name" :
{"name":
{"name":

"Mercury", "sundist":

"Venus'", '"sundist":
"Earth", '"sundist":
"Mars", "sundist":
"Jupiter', "sundist":
"Saturn", "sundist":
"Uranus'", "sundist":
"Neptune'", "sundist":
"Pluto", '"sundist":

"57910",

"108200",
"149600",
"227940",
"778330",
"1429400",
"2870990", "radius":
"4504300", "radius":
"5913520", "radius":

"radius":
"radius":
"radius":
"radius":
"radius'":
"radius'":

"2440"}
"6052"}
"6378"}
"3397"}
"71492"}
"60268"}
"25559"}
"24766"}
"1150"}

71

Spark SQL Example

The JSON schema looks like this:

root
-- name: string (nullable = true)

-- radius: string (nullable = true)
-- sundist: string (nullable = true)

72

Spark SQL Example

We need to do the following:

1. extract the schema from planets. json
2. load the data
3. execute a SQL query

73

Spark SQL Example

object Planets {
def main(args: Array[String]) {

// Create spark configuration and spark context
val conf = new SparkConf().setAppName("Planets App")
val sc = new SparkContext(conf)

val sglContext = new org.apache.spark.sqgl.SQLContext(sc)

val currentDir = System.getProperty("user.dir") // get the current directory
val inputFile = "file://" + currentDir + "/planets.json"

val planets = sqglContext.jsonFile(inputFile)

planets.printSchema()
planets.registerTempTable("planets")

val smallPlanets = sqlContext.sql("SELECT name,sundist,radius FROM planets WHERE radius < 10000")
smallPlanets.foreach(println)

sc.stop()

74

from

WordCount In Python

__future__ import print_function

import sys

from operator import add

from pyspark import SparkContext

if

__name__ == "_main__":

if len(sys.argv) != 2:
print ("Usage: wordcount <file>", file=sys.stderr)
exit(-1)
sc = SparkContext(appName="PythonWordCount")
lines = sc.textFile(sys.argv[1], 10)
counts = lines.flatMap(lambda x: x.split(' ')) \
.map(lambda x: (x, 1)) \
.reduceByKey(add)
output = counts.collect()
for (word, count) in output:

print("%s: %i" % (word, count))

sc.stop()

76

kMeans Iin Python

from __future__ import print_function
import sys

import numpy as np

from pyspark import SparkContext

from pyspark.mllib.clustering import KMeans

def parseVector(line):

return np.array([float(x) for x in line.split(' ')])

if __name__ == "__main__":

if len(sys.argv) != 3:
print("Usage: kmeans <file> <k>", file=sys.stderr)
exit(-1)

sc = SparkContext (appName="KMeans")

lines = sc.textFile(sys.argv([1], 10)

data = lines.map(parseVector)

k = int(sys.argv[2])

model = KMeans.train(data, k)

print("Final centers: " + str(model.clusterCenters))
print("Total Cost: " + str(model.computeCost(data)))
sc.stop()

77

Some Spark Users

DATAB-RICKS AsiafNFQ uant
lab DA
Bai®hSE
PIZO NOKIA)
amazon \ V4
trueffect eh

/\ AUTODESK

®Hitachi Solutions, Ltd. .

Resources

The best way to begin learning Spark is to study the
material at Spark's official website

From this website you have access to Spark
Summits and other events which contain useful
video lectures for all Spark components.

79

Books

Books to learn Spark

&

Learning™

SPArk

LIGHTNING-FAST DATA ANALYSIS

Holden Karau, Andy Konwinski,

Patrick Wendell & Matei Zaharia

Advanced
Analytics with

SpaIk

PATTERNS FOR LEARNING FROM DATA AT SCALE

Sandy Ryza, Uri Laserson,

Sean Owen & Josh Wills

Fast Data Processing
with Spark

High-sg distributed computing ma:

PACKT *

Fast Data Processing

with Spark
Second Edition

80

Useful MOQOCs

Coursera (www.coursera.org):
Introduction to Big Data
Big Data Analysis with Scala and Spark

Data Manipulation at Scale, Systems and Algorithms

edX (www.edx.org):

Introduction to Apache Spark

Distributed Machine Learning with Apache Spark
Big Data Analysis with Apache Spark

81

https://spark.apache.org/

Dataset Download

Where to find more graph data ?

Take a look at
http:/Isnap.stanford.edu

rd.edu

v ¢ [a Search

stes [Z]Cloud9 Wik

{_iCitation Reports [Z]Trajimar [Sie-Bankingv € Coursera E5Torrents v @ BitTorrentSync E=iDelabv (£S5 Okeanos ¥

|+ &
GHDEBULL @®SIGMOD [ElAiBouosg ESAegeanv [TIAPSIS 2015 §

- "SNAP, -

SNAP for C++ »
SNAP for Python 3
SNAP Datasets >
What's new

People

Papers

Citing SNAP

Links

About

Contact us

Open positions

As part of the Mobilize
Center at Stanford, SNAP
Group has several
openings for Postdoctoral
Fellows. More info here.

Stanford Network Analysis Project

.o'. SNAP for C++: Stanford Network Analysis Platform

Stanford Network Analysis Platform (SNAP) is a general purpose network analysis and graph mining library. It is written in
C++ and easily scales to massive networks with hundreds of millions of nodes, and billions of edges. It efficiently manipulates
large graphs, calculates structural properties, generates regular and random graphs, and supports attributes on nodes and
edges. SNAP is also available through the NodeXL which is a graphical front-end that integrates network analysis into
Microsoft Office and Excel.

.o'. Snap.py: SNAP for Python

Snap.py is a Python interface for SNAP. It provides performance benefits of SNAP, combined with flexibility of Python. Most of
the SNAP C++ functionality is available via Snap.py in Python.

.o'. Stanford Large Network Dataset Collection

A collection of more than 50 large network datasets from tens of thousands of nodes and edges to tens of millions of nodes
and edges. In includes social networks, web graphs, road networks, internet networks, citation networks, collaboration
networks, and communication networks.

82

Questions ?

Thank you

83

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83

