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Introductory definitionsIntroductory definitions
Online Social Network (OSN)Online Social Network (OSN)

Depicted by a directed graph G = (V,E) (social graph) 

Semantics of edges

Directionality of the edges 

Neighbourship

OSN-aware systems /algorithms / mechanisms: take
information extracted from OSNs into consideration:
 the general structural properties of the OSN

 information exchanged over the OSN
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Introductory definitions …Introductory definitions …
Information Diffusion and Social Information Diffusion and Social 
CascadesCascades
Information diffusion:

a piece of information will become eventually popular or
its spread will stop quickly

Social Cascade:

a piece of information is extensively retransmitted over an
OSN after its initial publication from an originator user
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Introductory definitions…Introductory definitions…
Content Delivery Networks (CDNs)Content Delivery Networks (CDNs)

 dynamic replication of data ((images, CSS,
javascript files (webpage assets)) ) in
various places of the world as near as
possible to the user that consumes it
(surrogate servers (2) closer to location)

 dissimilar in terms of provided services /
geographic coverage
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 optimization of their overall efficiency:
 automatic detection of the medium (pc/

smartphone / tablet),
 optimized management of the browser

cache,
 server load-balancing,
 consideration of specific nature of the

content of the media provider (video on
demand, live videos, geo-blocked content,
etc.)



Introductory definitions… Introductory definitions… 
CDN Copy policiesCDN Copy policies
 Push-based proactive prefetching of content to all surrogate servers

(minimum response time, maximum copying content cost)
◦ typically used for information that is in high demand by users (large files or static

assets that don’t frequently change as often)

 Pull-based content is forwarded to the surrogate server at the moment the
user asks for it (minimum copying cost, maximum response time)
◦ typically used for personalized information (ideal for small objects with inherent

virality and limited duration),
◦ Most modern CDNs: MaxCDN, EdgeCast, Amazon CloudFront, BitGravity, Akamai,◦ Most modern CDNs: MaxCDN, EdgeCast, Amazon CloudFront, BitGravity, Akamai,

CDNetworks, CacheFly, ChinaCache, MaxCDN, CDN77, etc. still deploy both pull
and push zones, with pulling being the most dominant case.

 Cooperative: (to reduce replication and update cost) surrogate servers are
cooperating with each other in case of cache misses
◦ closest / random / load balancing
◦ mapping between content and surrogate servers

 Uncooperative: local surrogate server or origin server
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Introductory definitions… Introductory definitions… 
CDNs suitable for …CDNs suitable for …
 Sites streaming large video files

 Sites which consist of mainly large media files like
image sites

 Sites with known heavy traffic in different countries

 Sites with many tablet and mobile users Sites with many tablet and mobile users

 Not for sites that have their main traffic in one
geographic area or region

online multimedia streaming providers (e.g. YouTube) rely
on CDNs [88]
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Introduction and MotivationIntroduction and Motivation (1/2)(1/2)
•multimedia content delivery technologies: essential for a wide range of
innovative services-multimedia social networks, P2P video streaming, IPTV,
interactive online games, cloud multimedia content delivery, content-centric
networks

• Network infrastructures: Content Delivery Networks (CDNs)
delivery of voluminous content:

•proliferation of smartphones
•cheap broadband connections
•free short clip and streaming platforms (100 hours of video

content uploaded in YouTube per minute [14])

•multiplication over popular Online Social Networks 
(OSNs) (500 million tweets per day, of which more than 400 tweets per
minute include a YouTube link ( [10], [7], [39]))

•video stalling events (i.e. playback interruptions) have a
dramatic impact on the QoE [170]
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CDNs need to cope with the cost-efficient prefetching of
bandwidth-intensive content.



Major CDN issues [92]:

 (i) the most efficient placement of surrogate servers (high performance
and less infrastructure cost)

 (ii) the best content diffusion placement (which content will be copied
and to what extent)

 (iii) the temporal diffusion (most efficient timing of the content
placement)

OSN issues:

Introduction and Motivation (2/2)Introduction and Motivation (2/2)

OSN issues:

 efficient handling of graphs with billions of nodes and edges [161] 
global replication demanded by traditional CDNs becomes expensive

 Long-Tail effect of user-generated content 

not popular enough to be replicated globally, but together the long-tail may get 
sufficient accesses

Combined issues:

unchanged throughput of the proposed systems / algorithms / policies
with the increase in the data input size (social graphs, cascades)
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Content staging Content staging --Limitations / CaveatsLimitations / Caveats

OSNs utilization:

 lacks experimental evaluation with non-synthetic
workloads

 ignores storage issues of the infrastructure ignores storage issues of the infrastructure
employed

 overlooks matters such as refined topology of the
employed data centers
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Aim of the Research Work: “the exploitation of usage
patterns found in OSNs for the improvement of user
experience through the facilitation of proactive content

challenging endeavor: The engineering of general
OSN-aware content placement policies over a CDN
infrastructure
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experience through the facilitation of proactive content
caching decisions in existent Content Delivery
infrastructures”
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Research work phasesResearch work phases
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Related Work Related Work –– Taxonomy of Content Taxonomy of Content 
Delivery over OSNs [94]Delivery over OSNs [94]
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[94] I. Kilanioti, C. Georgiou, and G. Pallis, “On the impact of online social networks in content
delivery,” in Advanced Content Delivery and Streaming in the Cloud, M. Pathan, R. Sitaraman,
and D. Robinson, Eds. Wiley, 2014.



Metrics for characterization of cascades Metrics for characterization of cascades 
-- Common cascadesCommon cascades
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Ordering of common shapes of cascades in the blogosphere [73] 
by frequency, with r the frequency ranking of Gr.
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Metrics for characterization of social Metrics for characterization of social 
cascades cascades 

 Geographic (geodiversity, georange [138])

 Structural (size, length [27])

 Temporal (time delay between consecutive steps
[138], time duration, rate of the cascade [44] )

Approaches:

 Microscopic (Watts [157])

 Macroscopic (Kleinberg and Easley [60], Ver Steeg
et al. [145])

 Hybrid (Dave et al. [52])
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BandwidthBandwidth--intensive media content and intensive media content and 
Social Networks Social Networks –– Measurement Studies on Measurement Studies on 
OSNsOSNs
[19],[85],[98],[101],[105],[117],[159]:
 power-law , scale-free
 in-degree matches out-degree,
 average distances are lower, clustering coefficients higher than those of

the web graph (clustered 10.000 more times than random graphs, 5–50
times more than random power-law graphs)

 giant component (dense core of shrinking diameter [106]) / middle
region(various isolated communities interacting with one another but
not with the overall network)/ singletons [98]

 temporal evolution (densification power-law, shrinking diameters)

 OSN user workloads: clickstream model [34] 
◦ browsing most dominant behavior (92%), 
◦ social cascade effect (bandwidth-intensive-media found through a 1-hop friend, 

80%)
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Impact of bandwidthImpact of bandwidth--intensive media intensive media 
content diffusion over OSNscontent diffusion over OSNs
 [118], [43], [66], [71], [127]:YouTube traffic with

emphasis on the file size, bitrate, usage patterns and
popularity

 [71]: similarities between traditional Web and media
streaming workloads

 [47]:YouTube videos, small-world characteristics

 [65], [164], [42]: Long-tail effect for YouTube and VOD
systems

 [163]:temporal variation of popularity of content in OSNs
22/9/2017 I.Kilanioti-cHiPSet Training School, Novi Sad 2017 18



Applications and techniques (1/2)Applications and techniques (1/2)

 Buzztraq [137]: generation of hints for replica placement based on the
users’ friends’ location and number

outperforms location based placement (geographical location of
recent users)

 server bandwidth and storage constraints: ignored

 social cascade is indirectly analyzed via a third-party page (access
to media and social profile)to media and social profile)
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Applications and techniques (2/2)Applications and techniques (2/2)
 [166]: web based scheme for caching using the access patterns of

friends within the same Internet Service Provider (ISP) with a drop-in
component

users protected with k-anonymity

 [81]: logical addressing scheme technique for putting together in the
disk blocks containing data from friends

greedy heuristic that finds a layout for the users within the
communitiescommunities

organizes the different communities on the disk by considering
inter-community tie strength

 [82]: content locality (induced by the related videos feature) and
geographic locality are in fact correlated

 [138]: proof-of-concept geographic model of CDN
 “social cascades tend not to expand geographically”
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Models of information diffusionModels of information diffusion
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SNA toolsSNA tools
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Tools for CDN simulationTools for CDN simulation
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Graph toolsGraph tools
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Phase 2Phase 2 –– The Social PrefetcherThe Social Prefetcher::
Design, experimentally evaluate and validate

•an efficient copying algorithm

•the accompanying framework

a dynamic mechanism of preactive copying based on demand prediction in social
networks to a CDN infrastructure

Major CDN issues [92]:
(i) the most efficient placement of surrogate servers
(ii) the best content diffusion placement (which content will be copied, local/global replication extent)(ii) the best content diffusion placement (which content will be copied, local/global replication extent)

(iii) the temporal diffusion.

Challenges…

efficient handling of graphs with billions of nodes and edges
efficient handling of long-tail UGC (virality, localization)
real datasets for study of cascades
data placement, replication and distribution for a large variety of resource
types and media formats
blackbox treatment of CDN policies/ need for participation of third users
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[92] I. Kilanioti, “Improving multimedia content delivery via augmentation with social
information. The Social Prefetcher approach.” Multimedia, IEEE Transactions on, vol. 17,
no. 9, pp. 1460–1470, 2015. [Online]. Available: http://goo.gl/x81Xv1



Phase 2: The Social Prefetcher [92]Phase 2: The Social Prefetcher [92]
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Applied heuristicsApplied heuristics

 Users more influenced [92] :
◦ by geographically close friends  “geographic

zones”
◦ moreover by mutual followers

 Social cascades: short duration [138], [174] Social cascades: short duration [138], [174]
◦ percentage of cascades proceeding for days not

directly attributed to the influence that a social
contact exerts (video in the user newsfeed)

◦ threshold for the cascade effect :
 24 hours/ 48 hours/ threshold covering all requests/ indicatively

<24 hours
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New requests in the CDNNew requests in the CDN
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SubpoliciesSubpolicies for local copyingfor local copying
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For every new object in the serverFor every new object in the server
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CDN proofCDN proof--ofof--concept setupconcept setup
MethodologyMethodology
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Evaluation Evaluation 
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162 zones, as the 142 zones
of Twitter include generic
characterizations, e.g.,
Eastern Time and Central
Time
3 Pacific Time, 14 none, 1
international, 1 westafrica, 1
Midatlantic, 4 Eastern, 3 Central Time



Dataset and Experimentation SetupDataset and Experimentation Setup
 Twitter dataset containing geographic locations, follower lists and tweets for 37 M users

 spreading of more than 1M YouTube videos over this network

 a corpus of more than 2 B messages and

 approximately 1.3 M single messages with an extracted video URL

 330 experiments (55 per (time threshold & centrality metric): all possible combinations for
X=10 closest geographic zones and Y<X zones with highest centrality)
 m1.xlarge AWS EC2 instance (ca. 6 hours) per experiment,
 UCY VPS

 AWS Elastic MapReduce for Graph analysis (centrality computation)
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MetricsMetrics
 Mean Response Time: how fast a client is

satisfied
N number of satisfied requests, ti response

time of i-th request
 Hit Ratio: percentage of the client-to-CDN

requests that resulted in a cache hit (high values:
high-quality content placement of the surrogate
servers)servers)

 Active servers: servers being active serving
clients

 Mean Surrogate Servers Utility: number of bytes
of the served content against the number of bytes
of the pulled content (from the origin server or
other surrogate servers)
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Experimental results (1/4)Experimental results (1/4)

 Impact of time threshold duration 
(MResponseTime)
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Experimental results (2/4)Experimental results (2/4)

 Impact of number of zones (MRT)
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Experimental results Experimental results (3/4)(3/4)

 Impact of influence measurement metric 
(MRT)
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Experimental results (4/4)Experimental results (4/4)

Social prefetcher
Improvement up to 40%

Buzztraq
Improvement 10 to 40% 
compared to plain LOCATION 
BASED PLACEMENT

Static 
1.846021ms

Plain LBP (k=3)
1.732023s

MRT

1.117026ms

MRT

1.395011ms
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Significant improvement over respective improvement (30%) in pull-based methods
employed by most CDNs
Up to 40% improvement over static policy each time
Refined data centers topology, storage issues employed methods do not consider
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Phase 3Phase 3 –– ParameterizationParameterization::

Parameterize with

• caching schemes variations for the distributed infrastructures the
CDNs deploy

• temporal factors related to the most efficient timing of the content
placement
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• other contextual information of the OSN and the media platform

[93] I. Kilanioti and G. A. Papadopoulos, “Socially-aware multimedia content delivery for
the cloud,” in 2015 IEEE/ACM 8th International Conference on Utility and Cloud
Computing (UCC), Dec 2015, pp. 300–309. [Online]. Available: http://goo.gl/gsjh0E

[168] I. Kilanioti and G. A. Papadopoulos, “Delivering social multimedia content with
scalability,” in Resource Management for Big Data Platforms: Algorithms, Modelling
and High-Performance Computing Techniques, Springer Computer Communications
and Networks Series, Eds. F. Pop, J. Kolodjiez, B. D. Martino, Springer, 2016.



CACHING SCHEMESCACHING SCHEMES

•LRU
•LFU
•Size-adjusted LRU/ SIZE

Si: size of object i
C(k): set of objects in cache at k-th iteration
ΔΤik : time since last access of object i (k-th
iteration)
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Selection of caching schemes among
-mLRU,
-scoring based SC caching algorithm,
-Cache Management based on Temporal Pattern
Solicitation (CMTPS) algorithm etc.
based on criteria of:
-Time complexity
-Ease of implementation



Phase 3 Phase 3 –– Parameterization [93]Parameterization [93]
Why is our Approach Necessary: An ExampleWhy is our Approach Necessary: An Example
 Bob(UK): assigned to the local CDN servers of an OSN service

Bob logs into the OSN and
posts a video that he wants to
share

Aggregated over all users,
pushing can lead to traffic
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pushing can lead to traffic
congestion (content may not
be consumed)

intensified problem of
caching with unique friends
per area (Alice in Athens)



CopyingCopying underunder conditionsconditions……
Contextual conditions (variation 1)
content with high viewership within the media

service
Temporal conditions: at the time window that

signifies (variation 2)
a non-peak-time for the upload in UK area and
a non-peak-time for the download in Athens area

copied to geographically close zones where the user has 
mutual friends with high influence impact

 HENCE:
 -smaller response times for the content to be

consumed (users)
 -lower bandwidth costs (OSN provider)
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Impact of Time Threshold Duration Impact of Time Threshold Duration 
on Mean Response Time: As the time threshold increases from 24 to 48 h
and to hours covering the entire set of requests, we observe that the mean
response time decreases steadily.

indicative values for the 10 closest zones of mutual followers and varying subsets 
of 1, 5 and 10 zones with the highest influence metric, respectively, for both 
variations
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Variation 1 Variation 2



Impact of zones numberImpact of zones number

on Mean Response Time: 
 trade-off between the reduction of the response time and the cost of copying
 switch point with approximately 4 zones out of the 10 used (for a fixed number of

closest zones with mutual followers)
 slight increase in the mean response time attributed to the delay for copying content

to surrogate servers
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Mean response time for X=10 closest zones with mutual followers and all possible Y
values, Y ∈ [1,10] for (i)Variation-1 and (ii)Variation-2

 cost per copy: related to the number of hops among the client and the
server where copying is likely to be made (Put function)

Variation 1 Variation 2



Performance comparisonPerformance comparison
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 lowest mean response times when time threshold covers all requests
 better performance in terms of mean response times and hit ratios achieved for the

Variation-1
 both variations perform better than the Social Prefetcher approach (bare

implementation without the variations) [92]



Phase 4Phase 4 –– Predictive Model for Predictive Model for 
Diffusion over OSNsDiffusion over OSNs::
•merge user-centric data from OSN with video-centric data from media
platform

•investigate ties between predictability of video sharing and the social
context of video uploaders

•develop and validate accurate model to predict future popularity of a
video resource given features of the underlying network of its initial sharer
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video resource given features of the underlying network of its initial sharer

•incorporate it into an OSN-aware mechanism for content
delivery & experimentally evaluate improvement of the user experience

[167] I. Kilanioti and G. A. Papadopoulos, “Efficient content delivery through popularity
forecasting on social media,” in Proceedings of the 7th IEEE International Conference on
Information, Intelligence, Systems and Applications, IISA 2016, Chalkidiki, Greece, July 13-
15, 2016, pp. 13–19.
[169] ] I. Kilanioti and G. A. Papadopoulos, “Predicting video virality on Twitter,” in
Resource Management for Big Data Platforms: Algorithms, Modelling and High-
Performance ComputingTechniques, Springer Computer Communications and Networks
Series, Eds. F. Pop, J. Kolodjiez, B. D. Martino, Springer, 2016.



Prediction of social virality:

What is predicted…

 amount of aggregate activities (e.g., aggregate daily hashtag use)

 user-level behaviour (retransmission of a specific tweet/URL)

 growth of the cascade size

Duration of prediction study…

 specific time-window

Related WorkRelated Work

 entire cascade duration

Approach….

 Feature-based methods (content, temporal etc. features)
 learning algorithms schemes: simple regression analysis, regression trees, content-based

methods, binary classification, etc.

 Time-series analysis works
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Problem DescriptionProblem Description
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 Twitter

◦ retweet mechanism enables users to propagate information across multiple hops in the network

 Analysis of user interests [1] against directory information from http://wefollow.com

 Variety of features extracted:

◦ number of users’ tweets,

◦ fraction of tweets that are retweets,

◦ the fraction of tweets containing URLs, etc.

 Sharing events in the dataset: tweets containing a valid YouTube video ID (category, Freebase topics and
timestamp)

DatasetDataset

timestamp)

 Aggregated features of YouTube videos shared:

◦ average view count

◦ median inter-event time between video upload and sharing, etc.

 Dataset augmentation with Tweet content information

◦ for 15 M. video sharing events

◦ followership information of the 87K Twitter users
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n: number of followers, 
b: average of number of a user’s followers / number of users he follows (catering for 
users with reciprocal followership), 
e: average number of retweets X number of user’s tweets (effect of a user’s tweet)

Score calculation, Content distanceScore calculation, Content distance
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Selection of predictors among:
•number of distinct users retweeted,
•fraction of the user tweets that were retweeted,
•average number of friends of friends,
•average number of followers of friends,
•number of YouTube videos shared,
• account creation time,
•number of views of a video, etc.,

Experimental EvaluationExperimental Evaluation22/9/2017 I.Kilanioti-cHiPSet Training School, Novi Sad 2017 52



Regression resultsRegression results
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Comparison with other modelsComparison with other models
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 Predictive Model: shift with approximately 7 zones out of the 10 used

 trade-off : MRT reduction- cost of copying in servers
 cost for every copy related to the number of hops among the client and the server where copying is likely

to take place

 Predictive Model: outperforms algorithms in [9], [10] (average MRT of 1.0647 msec)

 Precalculated zones with highest average values for each scheme

Experimental Evaluation Experimental Evaluation ––Main FindingsMain Findings
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OutlineOutline

INTRODUCTION 
AND 

MOTIVATION

• Introductory 
Definitions

• Introduction and 
Motivation

APPROACH

• Phase 1: 
Literature 
Review on 
Content Delivery 

DISCUSSIONS 
AND 

CONCLUSIONS

• Large-scale 
Datasets

• OSN Evolution
• Semantic Motivation Content Delivery 

over OSNs
• Phase 2: The 

Social Prefetcher
• Phase 3: 

Parameterization
• Phase 4: 

Predictive Model 
for Diffusions 
over OSNs

• Semantic 
Annotation

• Mobile CDNs and 
the Cloud

22/9/2017 56I.Kilanioti-cHiPSet Training School, Novi Sad 2017



Discussion and ConclusionsDiscussion and Conclusions

[175] I. Kilanioti, G.A. Papadopoulos,
“Content Delivery Simulations
supported by Social Network-
awareness”, Simulation Modelling
Practice and Theory Journal -
SIMPAT Elsevier, ChipSet Special
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pull strategies achieve a lower
mean response time under
high loads, while push
strategies are superior under
low to medium load [171-173]

SIMPAT Elsevier, ChipSet Special
Issue, under review



Discussion and ConclusionsDiscussion and Conclusions
 Conventional CDN systems vs Next generation CDN systems:

◦ variety of social interactions with push and pull modes of information
access

◦ insufficient efforts to optimize multimedia CDN in the context of emerging
social networks to enhance user experience

◦ suboptimal on-demand high-quality video content delivery services – call
for improved and additional CDN capabilities in place

◦ advanced mechanisms for data placement, replication and distribution for a
large variety of resource types and media formats

◦ efficient handling of long-tail UGC (virality, localization)
-Large Scale Datasets
-OSN Evolution
-Semantic Annotation
-Mobile CDNs and the Cloud

◦ discusses challenges inherent in developing OSN-aware content delivery
applications

◦ introduces novel algorithms for efficient delivery of UGC over OSNs
◦ aims to serve as a starting point for extensive experimentation of the

community with OSN-aware content delivery schemes
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Lobby index example Lobby index example –– HITS exampleHITS example

Largest integer l such that v has l neighbours with 
a degree of at least l.

l(A) =3
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