
Collecting and analysing data over smart 
participatory networks

Radu-Ioan Ciobanu
Faculty of Automatic Control and Computers

University Politehnica of Bucharest
radu.ciobanu@cs.pub.ro

mailto:radu.ciobanu@cs.pub.ro


Introduction

● Mobile devices collect mobility data, but what can we do with it?

● Create an Android app, launch it, and hope for the best?

● No!

○ Experiments usually involve hundreds or thousands of devices

○ Creating efficient routing and dissemination solutions for ONs can be difficult

○ Frameworks that allow the testing of such solutions before deploying them in real-life 
are extremely useful

○ Developers can test their solutions and tweak them in controlled scenarios, without 
having to incur high costs (in terms of money and time)

○ Evaluate in simulation, and only then in live research



MobEmu

● Opportunistic framework used for replaying mobility traces/models and emulating 
data routing and dissemination algorithms

● Can run a user-created algorithm on a desired mobility trace or synthetic model, as 
long as certain implementation rules are followed

● Written in Java

○ highly modular

○ easy to understand and/or modify

● https://github.com/raduciobanu/mobemu

https://github.com/raduciobanu/mobemu


Motivation

● An alternative to ONE (Opportunistic Network Environment), which has some caveats:

○ no support for data dissemination

○ community detection not implemented

○ no social relationships information

○ selfishness not modelled

○ context data absent

● Other solutions include ns-2, ns-3, OMNet++, but:

○ they do not offer complete support for ON simulations

○ their granularity levels can lead to unnecessary complexities and various challenges 
in running large experiments



Functionality

● Parses a mobility trace or runs a synthetic model

● At every step of the trace:

○ checks whether a contact between two nodes occurs

○ checks if nodes should generate messages

○ computes a node’s community and centrality

● If a contact occurs, a routing or dissemination algorithm is applied for each node

● Various statistics are collected



Functionality (2)

● User can control:

○ data memory size

○ stored contact history size

○ network speed

○ altruism level

○ battery behavior

○ number of messages generated

○ message destinations

○ etc.



Components



Components (2)

● Trace - list of Contacts (node IDs, timestamps)

● Parser

○ getTraceData

○ getContextData - map of Context objects (node ID, set of Topics)

○ getSocialNetwork

○ getNodesNumber

● HCMM is also implemented

○ synthetic mobility model

○ social relations

○ physical locations



Components (3)

● Node

○ data memory, own memory - lists of Messages (ID, source, destination, Context)

○ contact history - map of ContactInfo objects

○ data exchange history - ExchangeHistory, ExchangeStats

○ social community information - Centrality, CommunityDetection

○ social network connections - array of booleans

○ interests - Context

○ battery information (drain rate, charge duration, usability) - Battery

○ network information (messages per contact) - Network

○ selfishness information - Altruism



Routing and dissemination
Inherit from the Node class and implement the onDataExchange function



Routing and dissemination (2)
● Algorithms implemented:

○ Epidemic

○ BUBBLE Rap

○ Spray and Wait/Focus

○ ML-SOR

○ Social Trust

○ JDER

○ IRONMAN

○ SENSE

○ SPRINT

○ ONSIDE

○ Interest Spaces

● Metrics analyzed:

○ hit rate

○ delivery cost

○ delivery latency

○ hop count

● Context data:

○ social network and communities

○ history of contacts/exchanges

○ battery

○ selfishness

○ interests



Example

● Epidemic algorithm on the UPB 2012 trace



Assignment

● Implement your own routing or dissemination 
solution and compare it to an existing algorithm



Thank you!

radu.ciobanu@cs.pub.ro


