

Collecting and analysing data over smart participatory networks

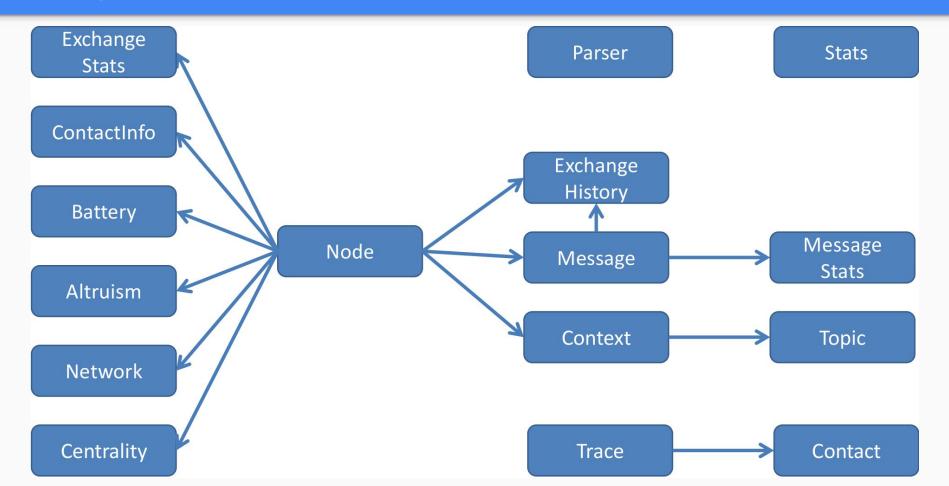
Radu-Ioan Ciobanu Faculty of Automatic Control and Computers University Politehnica of Bucharest radu.ciobanu@cs.pub.ro

Introduction

- Mobile devices collect mobility data, but what can we do with it?
- Create an Android app, launch it, and hope for the best?
- No!
 - Experiments usually involve hundreds or thousands of devices
 - Creating efficient routing and dissemination solutions for ONs can be difficult
 - Frameworks that allow the testing of such solutions before deploying them in real-life are extremely useful
 - Developers can test their solutions and tweak them in controlled scenarios, without having to incur high costs (in terms of money and time)
 - Evaluate in simulation, and only then in live research

- Opportunistic framework used for replaying mobility traces/models and emulating data routing and dissemination algorithms
- Can run a user-created algorithm on a desired mobility trace or synthetic model, as long as certain implementation rules are followed
- Written in Java
 - highly modular
 - easy to understand and/or modify
- <u>https://github.com/raduciobanu/mobemu</u>

Motivation


- An alternative to ONE (Opportunistic Network Environment), which has some caveats:
 - no support for **data dissemination**
 - **community detection** not implemented
 - no **social relationships** information
 - selfishness not modelled
 - context data absent
- Other solutions include ns-2, ns-3, OMNet++, but:
 - they do not offer complete support for ON simulations
 - their granularity levels can lead to unnecessary complexities and various challenges in running large experiments

- Parses a mobility trace or runs a synthetic model
- At every step of the trace:
 - checks whether a **contact** between two nodes occurs
 - checks if nodes should generate **messages**
 - computes a node's **community** and **centrality**
- If a contact occurs, a **routing** or **dissemination** algorithm is applied for each node
- Various statistics are collected

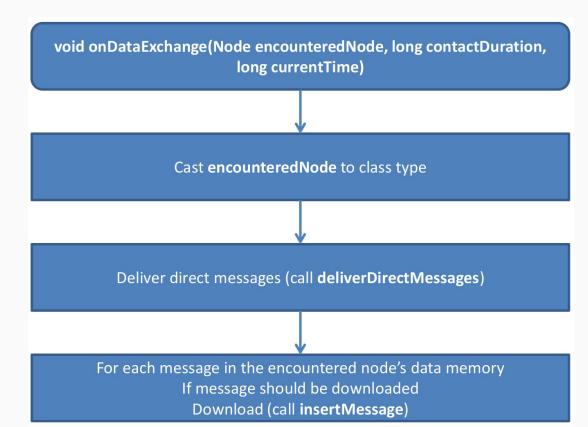
Functionality (2)

- User can control:
 - data memory size
 - stored contact history size
 - network speed
 - altruism level
 - battery behavior
 - number of messages generated
 - message destinations
 - etc.

Components

Components (2)

- Trace list of Contacts (node IDs, timestamps)
- Parser
 - o getTraceData
 - getContextData map of Context objects (node ID, set of Topics)
 - getSocialNetwork
 - o getNodesNumber
- HCMM is also implemented
 - synthetic mobility model
 - social relations
 - physical locations


Trace	Devices		Duration	Communication	Troco type	Social	Interest
	Mobile	Fixed	(days)	Communication	mate type	data	data
St. Andrews	27	0	79	Bluetooth	Academic and urban	Yes	No
Intel	8	1	6	Bluetooth	Academic	No	No
Cambridge	12	0	5	Bluetooth	Academic	No	No
Infocom	41	0	4	Bluetooth	Conference	No	No
Infocom 2006	78	20	4	Bluetooth	Conference	No	Yes
Content	36	18	25	Bluetooth	Urban	No	No
UPB 2011	22	0	25	Bluetooth	Academic	Yes	No
UPB 2012	66	0	64	Bluetooth and Wi-Fi	Academic	Yes	Yes
Sigcomm 2009	76	0	3	Bluetooth	Conference	Yes	Yes
NUS	22341	0	118	Student schedule	Academic	No	No
GeoLife	182	0	1885	GPS	Urban	No	No
SocialBlueConn	15	0	9	Bluetooth	Academic	Yes	Yes
NCCU	115	0	15	Bluetooth	Academic	No	No

Components (3)

- Node
 - data memory, own memory lists of Messages (ID, source, destination, Context)
 - contact history map of ContactInfo objects
 - data exchange history ExchangeHistory, ExchangeStats
 - social community information Centrality, CommunityDetection
 - social network connections array of booleans
 - interests Context
 - battery information (drain rate, charge duration, usability) Battery
 - network information (messages per contact) Network
 - selfishness information Altruism

Routing and dissemination

Inherit from the Node class and implement the onDataExchange function

Routing and dissemination (2)

- Algorithms implemented:
 - Epidemic
 - BUBBLE Rap
 - Spray and Wait/Focus
 - ML-SOR
 - Social Trust
 - JDER
 - IRONMAN
 - SENSE
 - SPRINT
 - ONSIDE
 - Interest Spaces

- Metrics analyzed:
 - hit rate
 - delivery cost
 - delivery latency
 - hop count
- Context data:
 - social network and communities
 - history of contacts/exchanges
 - battery
 - selfishness
 - interests

• Epidemic algorithm on the UPB 2012 trace

• Implement your own routing or dissemination solution and compare it to an existing algorithm

Thank you!

radu.ciobanu@cs.pub.ro