
cHiPSet Bucharest Summer School, Sep 2016

High-Performance Computing:
Gossip, Lies, & Secrets

s peaker

b ackground

p rogramming

c onclusions

Agenda

speaker

</begin>

let h be silent
let c be s

if President_Obama is
Irish

then
let Horacio be O’Rassio

</end>

spanish 101

speaker background programming conclusions

1986

1988

1990

1992

1994

1996

1998

2000

2002

2004

2006

2008

2010

2012

2014

2016

BSc MSc PG PhD
.edu

.com

.ac

25+ years @ HPC & parallel computing

part-time

career

speaker background programming conclusions

integration of

computational problems &

parallel patterns
to adaptively improve overall

resource utilisation

research

speaker background programming conclusions

background

• HPC has moved from centralised supers through P2P, minis,

clusters, and grids to clouds over last 40 years

• R/D efforts on HPC, clusters, Grids, P2P, and virtual

machines has laid the foundation of cloud computing

• Location of computing infrastructure in areas with lower

costs in hardware, software, datasets, space, and power

requirements – moving from desktop computing to

datacenter-based clouds

HPC Evolution

Source: K. Hwang, G. Fox, and J. Dongarra, Distributed and Cloud Computing, Morgan Kaufmann, 2012.

speaker background programming conclusions

Gartner’s 2016 hype cycle

speaker background programming conclusions

10

top 500

speaker background programming conclusions

flops dance

1976: Cray 1
160MFlops, 1MWords, $1M

2016: iPhone 7
2.23GFlops*, 256GB, $1K

1x Flops,
5x mem,
.001x cost

speaker background programming conclusions

Source: Wikipedia

Copyright © 2012, Elsevier Inc. All rights reserved. 1 - 12

HPC vs HTC

Descentralised
Computing HTC

Clouds

IoTBigData

Clusters

MPP

P2P

Voluntary

HPC

SMP

speaker background programming conclusions

Source: Raj Buyya, University of Melbourne, 2011

HPC.ac HTC.biz

speaker background programming conclusions

when to use what

Foster et al. "Cloud Computing and Grid Computing 360-Degree Compared," GCE '08 , Nov. 2008 doi: 10.1109/GCE.2008.4738445

speaker background programming conclusions

Copyright © 2012, Elsevier Inc. All rights reserved. 1 - 15

Intel only kept its Evolution of a Revolution chart up to 2006

Why?

http://download.intel.com/pressroom/kits/IntelProcessorHistory.pdf

speaker background programming conclusions

incomplete evolution

Copyright © 2012, Elsevier Inc. All rights reserved. 1 - 16

multicores

speaker background programming conclusions

accelerators to the rescue

Intel Xeon Phi
72 cores, 288 threads, 3+TFlops DP

Cori @ NERSC with 9300 Phi

NVIDIA Tesla P100
5.3 TFlops DP 64-bit, 3584 cores, 300W

speaker background programming conclusions

sponsored

Intel Xeon Phi

NVIDIA Tesla

for cHiPSet STSMs
at

speaker background programming conclusions

Copyright © 2012, Elsevier Inc. All rights reserved. 1 - 19

memory bottleneck

speaker background programming conclusions

Copyright © 2012, Elsevier Inc. All rights reserved. 1 - 20

cpu-memory gap

speaker background programming conclusions

challenge

“Ultimately, developers should start thinking about tens, hundreds, and
thousands of cores now in their algorithmic development and deployment
pipeline.”
Anwar Ghuloum, Principal Engineer, Intel Microprocessor Technology
Lab

“The dilemma is that a large percentage of mission-critical enterprise
applications will not ``automagically'' run faster on multi-core servers. In
fact, many will actually run slower. We must make it as easy as possible for
applications programmers to exploit the latest developments in multi-
core/many-core architectures, while still making it easy to target future
(and perhaps unanticipated) hardware developments.”
Patrick Leonard, Vice President for Product Development
Rogue Wave Software

speaker background programming conclusions

programming

Sad but true…

There are two things in life you
cannot buy (get enough of):

LOVE

&

SCALABILITY

speaker background programming conclusions

typical approaches

• Applications Programmers = Systems Programmers
– Insufficient assistance with abstraction

• Tough to scale, unless the problem is simple

• Difficult to change fundamentals
– Scheduling, Task structure, Migration

• Abstractions NEEDED

speaker background programming conclusions

multi-topic
• [A] General Literature; [B] Hardware

• [C: Computer Systems Organisation]

– C.1 Architectures

• C.2.2 Parallel Architectures

• C.2.3 Distributed architectures
• [D] Networks

• [E: Software and its Engineering]

– E.1 Software Organisation and properties

• E.1.3 Extra Functional Properties: Interoperability, performance,
reliability, usability

– E.2 Software Notations and Tools

• E.2.1 General Programming Languages: Language Features- Patterns
|| Concurrent Programming Structures

• [F] Data; [G] Theory of Computation; [H] Mathematics of Computing; [I] Information Systems; [J] Security and
Privacy; [J] HCI;

• [K: Computing Methodologies]
– K.1 Parallel Computing Methodologies

• [L] Applied Computing; [M] Social and professional topics

speaker background programming conclusions

issues

• We can muddle through on 2-8
cores
– maybe even 16

– modified sequential code may work
– multiple programs to soak up cores

– BUT larger systems are much more
challenging

• “Think parallel”
– New high-level programming

constructs
– Decouple Computation from

Coordination
speaker background programming conclusions

algorithmic skeletons

• Higher-Order Functions

• Abstract Patterns of Parallel Computation,
Communication, and Interaction

• Decouple Behaviour (Computation) from
Structure (Coordination)

speaker background programming conclusions

M Cole: Algorithmic skeletons: structured management of parallel computation. MIT Press, 1991.

Skeleton Scope Example
Data-

Parallel
Data

Structures
Scan, Map, Broadcast,

Reduce, Gather, Scatter,

Task-
Parallel

Tasks Farm, Pipeline, Seq, …

Resolution Family of
Problems

Div &Conq, Br & Bnd,
Dyn Prog, Heuristic Opt,

Gonzalez-Velez H, Leyton M. A Survey of Algorithmic Skeleton Frameworks: High-Level Structured Parallel
Programming Enablers. Software: Practice and Experience. 2010 Dec;40(12):1135-1160. [http] .

classification

speaker background programming conclusions

structured parallelism

• Based on skeletons,
Structured Parallelism
provides:
– Top-down design and

construction

– Well-defined control
structures

– Fixed scope of data
structures

speaker background programming conclusions

• Skeleton: Defines a parallel pattern in terms of computational
nodes, data and control dependencies

Parallel Pattern
=

Algorithmic Skeleton + GoF SE Req’s

• Aim: Write the application using skeletons once and
deploy “everywhere”
§ Application and Performance Portability

• Run-time support to cope with low-level platform details

pattern or skeleton?

speaker background programming conclusions

Open Question

Can the skeletons
improve the

Performance of Parallel
Applications executing

in a non-dedicated
heterogeneous System?

speaker background programming conclusions

Motivation

• Compilers are Static

• Run-time Optimisers are too General

• Skeletons have Structured, Predictable
Behaviour for a given Program

• Hypothesis: A Skeletal Program should
be able to Adapt to Dynamic Resource
Conditions over time using its Structural
Forecasting Information

speaker background programming conclusions

Methodology

Compile Execute

Resource
Status

-llib

Control Flow Libraries

Grid-
enabled

MPI
-lmpi

Metacomputing
Communications

External Libraries Phases

Instrumented
SP Program

Feedback

SP
Program

Program

Skeleton
Repository

API

Calibrate

Calibrated
Process

Resource
Monitor

Parallel
Algorithm

Static Dynamic

Results

speaker background programming conclusions

Phases

• Program: Select algorithmic skeleton
and parameterises the API

• Compile: Link with required libraries
• Calibrate: Execute worker/stage

function on input subset, extrapolate
node fitness, and rank nodes

• Execute: Monitor grid resource usage
and adapt workload accordingly

speaker background programming conclusions

phases

• Program: Select algorithmic skeleton
and parameterises the API

• Compile: Link with required libraries
• Calibrate: Execute worker/stage

function on input subset, extrapolate
node fitness, and rank nodes

• Execute: Monitor grid resource usage
and adapt workload accordingly

speaker background programming conclusions

phases

• Program: Select algorithmic skeleton
and parameterises the API

• Compile: Link with required libraries
• Calibrate: Execute worker/stage

function on input subset, extrapolate
node fitness, and rank nodes

• Execute: Monitor grid resource usage
and adapt workload accordingly

speaker background programming conclusions

phases

• Program: Select algorithmic skeleton
and parameterises the API

• Compile: Link with required libraries
• Calibrate: Execute worker/stage

function on input subset, extrapolate
node fitness, and rank nodes

• Execute: Monitor grid resource usage
and adapt workload accordingly

speaker background programming conclusions

phases

• Program: Select algorithmic skeleton
and parameterises the API

• Compile: Link with required libraries
• Calibrate: Execute worker/stage

function on input subset, extrapolate
node fitness, and rank nodes

• Execute: Monitor grid resource usage
and adapt workload accordingly

speaker background programming conclusions

implementation

l C APIs + MPI
l 2 Skeletons but GRASP is NOT restricted

Algorithmic
Skeleton

Workload
Type

Computation
Type

Application Employed

Task Farm Disjunct Embarrassingly-
parallel

Computational Biology Parameter Sweep

Pipeline Precedence

relations

Pipelined Whetstones Benchmark Function

l Individual Tasks with Similar Complexity
l 2006-2010 (then)

speaker background programming conclusions

•3.5 Year targeted research project (FP7
STReP)

•Runs from 1/10/11 to 31/3/15

•Funded by the European Commission

•13 partners from 8 countries
•Austria, Germany, Ireland, Israel, Italy, UK

•Hungary and Poland

•€ 4.2M

‘10s: ParaPhrase

speaker background programming conclusions

patterns multicore / gpu

Application

Design

Pattern-based

Development/

Refactoring

CPU

GPU GPU

GPU GPU

CPU

GPU GPU

GPU GPU

CPU

GPU GPU

GPU GPU

CPU

GPU GPU

GPU GPU

Parallelised

Application
Parallelised

Application

Parallelised

Application

Dynamic Mapping

Heterogeneous Hardware Pool

speaker background programming conclusions

• Structured parallel programming framework
• FastFlow: Skeletons = C++ classes & templates (via

Pthreads).
• Target: Multi-core CPU, Dist Sys, GPU
• Stream parallel patterns: pipeline, task-farm, loopback

§ Ongoing work for map and map-reduce skeletons on
multi-core

• Task-offloading on Tile64 and GPUs
• ParaPhrase Programming Framework. Open Source

(developers in cHiPSet WG2)

fastflow

http://calvados.di.unipi.it/
speaker background programming conclusions

concepts

speaker background programming conclusions

44

visualisation

45

Elastic deployment

conclusions

key findings

• Structure-based Resource-
Awareness improves the
Performance of Skeletal
Programs in Heterogeneous
Systems

• Autonomic Scheduling
Strategies without User-
supplied Performance
Estimations are Feasible
and Efficient

speaker background programming conclusions

progress

•Resource Awareness
– Enable real-world

applications

•Scheduling
– Evaluate new scheduling

schemes for skeletons

speaker background programming conclusions

• Latency
• Hierarchical Memory – How many

cycles do I need to?
• File Sizes? SneakerNet?

• Resources are finite
• 32 bit vs 64 bit? Max Matrix Size?

• Local Cores ?

• Specialised Units ?

• MakeSpan? Power? Other?

RESOURCES or LATENCY ?
speaker background programming conclusions

open issues

cHiPSet Bucharest Summer School, Sep 2016

High-Performance Computing:
Gossip, Lies, & Secrets

