High-Performance Computing:
Gossip, Lies, & Secrets

Horacio Gonzalez-Veélez
Cloud Competency Centre, NCI

E: horacio@ncirl.ie
L horaciogv
22-Sep-16

cHiPSet Bucharest Summer School, Sep 2016 I

<l

cHiPSet

(s)peaker
(background

@rogramming

@onclusions

<l

cHiPSet

</begin>

let h be silent
let ¢ be s

1f President Obama 1s
Irish

then

let Horacio be O’Rassio

</end>

[speaker [baciorond Jprogammng [condons]

<l

cHiPSet

.edu

. C O m alphamcro

N %,
-ac g ?':1\ o
Zz¢Caaabierll p§ TN
} } } } —r— | | ——
— — = — = — = [\) (\) (\)] (\) (\)] (\) (\)] DO [\
© O © e} O e} e} (@)} o O o o o (@)} (@»)} (@)}
Qo (0'e) © © Ne) @ @ (@») o (@») () (@») = = = —
(@)} oo (@») [\] H~ (@) (\)] H~ (o)) @'0] (@») [\ H~ (@)
25+ years @ HPC & parallel computing

o, rcscardcrl

cHiPSet

integration of
computational problems &

parallel patterns
to adaptively improve overall

resource utilisation

speaker background | programming | conclusions

<l

cHiPSet

* HPC has moved from centralised supers through P2P, minis,
clusters, and grids to clouds over last 40 years

* R/D efforts on HPC, clusters, Grids, P2P, and virtual
machines has laid the foundation of cloud computing

* Location of computing infrastructure in areas with lower
costs in hardware, software, datasets, space, and power
requirements - moving from desktop computing to
datacenter-based clouds

Source: K. Hwang, G. Fox, and J. Dongarra, Distributed and Cloud Computing, Morgan Kaufmann, 2012.

.-q

1 1~
cHiPSet

expect&%ns . Com!d:a mﬁo Advisors
Blockehain - 1 sloﬂwaruoofmod Security
— Autonomous Vehicles

Tl ol | - Nanotube Electromss

Geslure Coalrol Devices —\, Q Software-Defined Anything (SDx)
loT Platiomm
Commercial UAVs (Drones)
Affecliva Comguling
|Smart Data Discovery
Virual Personal Assistants J Natural-Lanquage Question Answering
Brain-Computer Interface —%
Conversational User Inleraces =, .
Volumetric Displays A [\ Enterprise Taxonomy and Ontology Management
Smart Workspace A, Human
Personal Analylics A Augmentaton
Cuanmum Compuling
Data Broker Paa$ (dbrPaas)
Neuromeephic Hardware
Context Brokering Vitual Reality
| 802.11ax ~4 Augmenled Reality
Genesal-Purpose Machine !nlelligence
4? Printing
Sman Dust &

A

ol

As of July 2016
Peak of

Innovation Trough of Plateau of
Trigger Ex:;;f:::;;:ns Disillusionment Slope of Enlightenmant Productivity

>

time
Years to mainstream adoption: obsolete

Olessthan2years O2toSyears @ 5!lo10years A morathan 10years @ before plateau
Sourcec Gariner (. 2016)

.11

1 1~
cHiPSet

1S

- Single Processor Constellations

- Cluster - MPP

R flops dance

cHiPSet
aD
1x Flops,
. DX mem,

.001x cost

Source: Wikipedia — 4 |
1976: Cray 1 2016: iPhone 7

160MFlops, 1MWords, $1M 2.23GFlops*, 256GB, $1K

background | programming | conclusions

<l

cHiPSet

)& @

Descentralised
Computing

speaker

CHiPSet
B Web services
B Datacentres Ci
B Uility Computing Technology :;ISI nlens
B Service Computing Convergence and HPC in
B Grid Computing l Scientific
B P2P Computing Applications
B (Qoud Computing
Computing Paradigns

B Ubiquitous : Reliable and Scalable
B Autonomic : Dynamic and Discovery

Attributes/Capabilities | ™ Composable: QoS,SLA, etc.

Source: Raj Buyya, University of Melbourne, 2011

background | programming | conclusions

*E when to use what

Scale

Distributed Systems

Clouds

Application Services
Oriented Oriented

Foster et al. "Cloud Computing and Grid Computing 360-Degree Compared,” GCE '08 , Nov. 2008 doi: 10.1109/GCE.2008.4738445

background | programming | conclusions

.-q

1 1~
cHiPSet

Intel Developer

FORUM THE EVOLUTION OF A REVOLUTION @

EXPLORE THE INTEL TECHNOLOGY INNOVATIONS THAT HAVE CHANGED THE WORLD, Leap ahead

The Revolution Begins The Revolution Continues

Theougheut histery, new and improved technologies
have transformed the human expzrience. In the 20th
century, the pace ¢ !(mn;escedwiu dn .ys»e

Intel continues to defver cn the promiss of Moore's
Law with the ntroduction of powerful multicore
technolegies, transforming the way we Ive, work,
and play once again

4 | o I
1 o ! =
1 N
} } 1 } } >
- 0800 | 0800k | |2Me | (SMR Se | oWe | Me | AWe | GMe | D0Me | dowe | imie i76e TG, é‘é’wz
@, | B@. |40, | & zsm B | | G0 | U || S0 mamo §360000 150e ssmm 220000000 | | 281900000
oy 5 1% 08 06y = i 331 g‘m) i g5om

http://download.intel.com/pressroom/kits/IntelProcessorHistory.pdf

Intel only kept its Evolution of a Revolution chart up to 2006

Why?

<l

cHiPSet

Multicore Processor

Core | Core2

L 1 Cache L. 1 Cache

Core n

L1 Cache

~ N 7

L2 Cache

ﬁ

1L

L3 Cache / DRAM

speaker

Intel Xeon Phi

72 cores, 288 threads, 3+TFlops DP
Cori @ NERSC with 9300 Phi

NVIDIA Tesla P100
5.3 TFlops DP 64-bit, 3584 cores, 300W

background | programming | conclusions

cHiPSet

Intel Xeon Phi

NVIDIA Tesla

for CHiPSet STSMs

at

National College of Ireland

Cloud Competency Centre

speaker

JF
2 OC M!ﬁfﬂyf/

cHiPSet

processor N

background

programming

conclusions

<l

CHiPSet
100,000
LTI 1] R ————————— L S
DR 11 1) SRR ——— A —
2
E Processor
e Processor-Memory
I [B O SR
Performance Gap
| ||
Memory
1 ‘ p— 1 1 1 1
1980 1985 1990 1995 2000 2005 2010
Yoar

ol challenge

“Ultimately, developers should start thinking about tens, hundreds, and

thousands of cores now in their algorithmic development and deployment
pipeline.”
Anwar Ghuloum, Principal Engineer, Intel Microprocessor Technology
Lab

“The dilemma is that a large percentage of mission-critical enterprise
applications will not ~ "automagically” run faster on multi-core servers. In
fact, many will actually run slower. We must make it as easy as possible for
applications programmers to exploit the latest developments in multi-
core/many-core architectures, while still making it easy to target future

(and perhaps unanticipated) hardware developments.”
Patrick Leonard, Vice President for Product Development

Rogue Wave Software

background

programming

conclusions

<l

cHiPSet

There are two things in life you
cannot buy (get enough of):

LOVE
&
SCALABILITY

ol

cHiPSet

- Applications Programmers = Systems Programmers
- Insufficient assistance with abstraction

- Tough to scale, unless the problem is simple

- Difficult to change fundamentals
- Scheduling, Task structure, Migration

- Abstractions NEEDED e

programming | conclusions

<l

cHiPSet

[A] General Literature; [B] Hardware
[C: Computer Systems Organisation]

- C.1 Architectures
- C.2.2 Parallel Architectures

- C.2.3 Distributed architectures
[D] Networks

[E: Software and its Engineering]
- E.1 Software Organisation and properties
- E.1.3 Extra Functional Properties: Interoperability, performance,
reliability, usability
- E.2 Software Notations and Tools

- E.2.1 General Programming Languages: Language Features- Patterns

|| Concurrent Programming Structures

[F] Data; [G] Theory of Computation; [H] Mathematics of Computing; [I] Information Systems; [J] Security and
Privacy; [J] HCI;

[K: Computing Methodologies]

- K.1 Parallel Computing Methodologies
[L] Applied Computing; [M] Social and professional topics

speaker background

The 2012 ACM Computing
Classification System -

<l

cHiPSet

- We can muddle through on 2-8

cores

- maybe even 16
- modified sequential code may work
- multiple programs to soak up cores

- BUT larger systems are much more
challenging

- “Think parallel”

- New high-level programming
constructs

- Decouple Computation from

Coordination

speaker background

I algorithmic skeletons

- Higher-Order Functions

. Abstract Patterns of Parallel Computation,
Communication, and Interaction

- Decouple Behaviour (Computation) from
Structure (Coordination)

Behaviour
Outcome sought by the
Application Progr ammer

M Cole: Algorithmic skeletons: structured management of parallel computation. MIT Press, 1991.

programming conclusions

ot classitication

— - - - - - - — _—

cHiPSet
Skeleton Scope Example
Data- Data Scan, Map, Broadcast,

Parallel Structures Reduce, Gather, Scatter,

Task- Tasks Farm, Pipeline, Seq, ...
Parallel

Resolution Family of Div &Congq, Br & Bnd,
Problems Dyn Prog, Heuristic Opt,

Gonzalez-Velez H, Leyton M. A Survey of Algorithmic Skeleton Frameworks: High-Level Structured Parallel
Programming Enablers. Software: Practice and Experience. 2010 Dec;40(12):1135-1160. [http].

programming | conclusions

<l

cHiPSet

. Based on skeletons,
Structured Parallelism
provides:

- Top-down design and
construction

- Well-defined control
structures

- Fixed scope of data
structures

speaker background

Ry pattern or skeleton?

Skeleton: Defines a parallel pattern in terms of computational
nodes, data and control dependencies

Parallel Pattern

Algorithmic Skeleton + GoF SE Req’s

Aim: Write the application using skeletons once and
deploy “everywhere”

. Application and Performance Portability
. Run-time support to cope with low-level platform details

programming conclusions

21 Open Question

Can the skeletons F}T
improve the | |
Performance of Parallel E &
Applications executing
in 2 non-dedicated

heterogeneous System?

programming conclusions

*E Motivation

- Compilers are Static
. Run-time Optimisers are too General

.- Skeletons have Structured, Predictable
Behaviour for a given Program

- Hypothesis: A Skeletal Program should
be able to Adapt to Dynamic Resource
Conditions over time using its Structural
Forecasting Information

programming |

.-q

1 1~
cHiPSet

~ :
- Grid Metacomputing
— .
é -lmpi Communications
- NP
| Parallel -
« Algorithm . .
I & Instrumented Calibratea
- Feedback

=
S
S
>

Resource

M

Monitor
- g
cpository . N .
Static : Dynamic Y

=== (Control Flow ——— Libraries
<> External Libraries 1 Phases

speaker background

<l

cHiPSet

- Program: Select algorithmic skeleton
and parameterises the API

speaker background

<l

cHiPSet

- Program: Select algorithmic skeleton
and parameterises the API

- Compile: Link with required libraries

speaker background

R phases

- Program: Select algorithmic skeleton
and parameterises the API

- Compile: Link with required libraries

- Calibrate: Execute worker/stage
function on input subset, extrapolate
node fitness, and rank nodes

programming |

R phases

- Program: Select algorithmic skeleton
and parameterises the API

- Compile: Link with required libraries

- Calibrate: Execute worker/stage
function on input subset, extrapolate
node fitness, and rank nodes

- Execute: Monitor grid resource usage
and adapt workload accordingly

programming l

R phases

- Program: Select algorithmic skeleton
and parameterises the API

- Compile: Link with required libraries

- Calibrate: Execute worker/stage
function on input subset, extrapolate

node fithess, and rank nodes

- Execute: Monitor grid resource usage <
A
and adapt workload accordingly e

programming conclusions

ol

cHiPSet

« C APIs + MPI
o 2 Skeletons but GRASP is NOT restricted

Algorithmic Workload Computation Application Employed
Skeleton Type Type
Task Farm Disjunct Embarrassingly- | Computational Biology Parameter Sweep
parallel
Pipeline Precedence Pipelined Whetstones Benchmark Function
relations

o Individual Tasks with Similar Complexity
. 2006-2010 (then)

programming | conclusions

<l

cHiPSet

3.5 Year targeted research project (FP7
STReP)
Runs from 1/10/11 to 31/3/15
‘Funded by the European Commission

13 partners from 8 countries
«Austria, Germany, Ireland, Israel, Italy,
‘Hungary and Poland

€ 4.2M

speaker background

.-q

1 1~
cHiPSet

Parallelised |: @ Parallelised

'{Parallelised
Application | Pattern-based | Application Application Application
Design Development/
Refactoring — - —
—— >
LN e \);
ﬂ Dynamic ﬂ Mapping L

__

; CPU b CPU b CPU b CPU "

)
0)
U
(@

————

N Y
®
U
(e

D

)
0)
U
(@

————

N Y
®
U
(e

D

)
0)
U
(@

————

__

Heterogeneous Hardware Pool

speaker background

ol

cHiPSet

Structured parallel programming framework

FastFlow: Skeletons = C++ classes & templates (via
Pthreads).

Target: Multi-core CPU, Dist Sys, GPU

Stream parallel patterns: pipeline, task-farm, loopback

. Ongoing work for map and map-reduce skeletons on
multi-core

Task-offloading on Tile64 and GPUs

ParaPhrase Programming Framework. Open Source
(developers in cHiIPSet WG2)

http://calvados.di.unipi.it/

programming | conclusions

concepts

.. . (W.‘»""l farm /map
Efficient applications for . - S
multicore and manycore | . ‘\I--"' — Al CH'I
"...____/'--____A',___.\ -____"._____.,."
| W |
FastFlow __/

Streaming network patterns (51 >_>4 52 +_,{ 53 ‘::,
Skeletons: pipeline, farm ~—
divide&conquer, map, map-reduce

—— pipeline
7~ ,.""—X\.
1] — il '\._W_/'I
Arbitrary streaming networks 5.‘ . \I---' - D&C
Lock-free SPSC, SPMC, N
MPSC, MPMC queues | w)
T - pipe+loop

N

Simple streaming networks :""—51\}_,{""52\}_,{"53 |
Lock-free SPSC queues and r_’ LY ./T
general threading model

2 R
(W :Ifarm + loop

"8 -~ .\' —_ / "-.____ f"—"\‘

) —»{ E\i' ‘l' ch

Multi-core and Many-core N TN

- - & \'_.-

Distributed Systems W)
W,

programming | conclusions

.-q

1 1~
cHiPSet

g Worker1

‘ ff_pipe_first_stage &g ff:ff_loadbalancer

& ff:ff_loadbalancer F Workert

W9 GPU_Stage W Workerd NP ffff_gatherer

‘ static_loadbalancer
W@ GPU_Stage W ff:ff_loadbalancer

‘ ff..ff_gatherer

‘ ff..ff_gatherer

‘ ff..ff_gatherer
‘ CPU_Stage

‘ ff..ff_loadbalancer ‘ Worker2
‘ ff..ff_loadbalancer

R CPU_Stage

P Woker2

‘ ff..ff_gatherer ‘ ff..ff_gatherer

N§ CPU_Stage

W CPU_Stage W Worker2

0-‘1

1 1~
cHiPSet

. ff_pipe_first_stage

W9 GPU_Stage

‘ static_loadbalancer

W@ GPU_Stage

& CPU_Stage

p ff:ff_loadbalancer

Wp CPU_Stage

N9 CPU_Stage

§§ CPU_Stage

‘ ff..ff_gatherer

. ff::ff_gatherer

‘ Worker1

. ff.:ff_loadbalancer

‘ ff::ff_loadbalancer

W Worker3

‘ ff::ff_loadbalancer

Worker2
‘ ff::ff_loadbalancer

W Worker2

. Worker2

‘ Worker1

‘ ff.:ff_gatherer

‘ ff..ff_gatherer

‘ ff.:ff_gatherer

. ff.:ff_gatherer

)

OZ—-—20+4-20Z%

mr S8 Qs

{

Automation Module

Vagrant

1

Local
Virtualized
Environment

I

L3 OvFtool

5 AWS
Specific
6 deployment

N

FastFlow
Cookbook
CPU/GPU

4

£

71

AWS
Public

A

\ OVF parser > template

as

Cloud

< .-
{EE. Key findings

cHiPSet

. Structure-based Resource-
Awareness improves the
Performance of Skeletal
Programs in Heterogeneous
Systems

- Autonomic Scheduling
Strategies without User-
supplied Performance
Estimations are Feasible
and Efficient

conclusions

progress

applications

- Resource Awareness
- Enable real-world

(@)
S n
—_ O
)
< 3
0 @
C 9
SS
< o
o 20
n V)
» — (D)
ERR-
T > o
A © C
< ¢
c (V)
S |

conclusions

<l

cHiPSet

Latency

. Hierarchical Memory - How many
cycles do | need to?

. File Sizes? SneakerNet?

Resources are finite
32 bit vs 64 bit? Max Matrix Size?
Local Cores ?
Specialised Units ?
MakeSpan? Power? Other?

RESOURCES or LATENCY ?

speaker background = programming

High-Performance Computing:
Gossip, Lies, & Secrets

Horacio Gonzalez-Veélez
Cloud Competency Centre, NCI

E: horacio@ncirl.ie
L horaciogv
22-Sep-16

cHiPSet Bucharest Summer School, Sep 2016 I

