
Marc FRINCU
Associate Professor, PhD

West University of Timisoara

Faculty of Mathematics and Computer Science

Department of Computer Science

cHiPSet Training School
Bucharest, Romania, 21-23 September 2016

 “A collection of (probably heterogeneous) automata whose distribution is transparent to
the user so that the system appears as one local machine. This is in contrast to a
network, where the user is aware that there are several machines, and their location,
storage replication, load balancing and functionality is not transparent. Distributed
systems usually use some kind of client-server organization.” – FOLDOC

 “
 A Distributed System comprises several single components on different computers,

which normally do not operate using shared memory and as a consequence
communicate via the exchange of messages. The various components involved
cooperate to achieve a common objective such as the performing of a business process.”
– Schill & Springer

 Main characteristics
◦ Components:

 Multiple spatially separated individual components

 Components posses own memory

 Cooperation towards a common objective

◦ Resources:
 Access to common resources (e.g., databases, file systems)

◦ Communication:
 Communication via messages

◦ Infrastructure:
 Heterogeneous hardware infrastructure & software middleware

2 Marc Frincu

 These definitions do not define the insides of a distributed
system

◦ Design and implementation

◦ Maintenance

◦ Algorithmics (i.e., protocols)

3

Facebook social network graph.

The Internet color coded by ISPs.

Marc Frincu

 “A distributed system (DS) is a collection of entities, each of
which is autonomous, programmable, asynchronous and
failure-prone, and which communicate through an unreliable
communication medium, appearing to the end user as a
single coherent system.”

 Key terms
◦ Entity = process on a device (PC, server, tablet, smartphone)

◦ Communication medium = wired or wireless network

4 Marc Frincu

 Parallelism
◦ Perform multiple tasks at the same time
◦ True parallelism requires distribution on multiple processors/cores/machines
◦ Can range from many core to multi processor to many computer on shared or

distributed memory

 Concurrency
◦ Computations with multiple threads
◦ Can exploit hardware parallelism but it is inherently related to the software need (i.e.,

react to different asynchronous events)
◦ Concurrency becomes parallelism if parallelism is real (one thread per

processor/core/machine) not virtual

 Distributed computing
◦ Related to where the computation physically resides

 Distributed algorithm is executed on multiple CPUs, connected by networks, buses or
any other data communication channel

◦ Computers are connected by communication links on distributed memories
 Rely fundamentally on message passing

◦ Usually part of the goal
 If resources are geographically spread than the system is inherently distributed

5 Marc Frincu

 Is distributed computing a subset of parallel
computing?

 Not an easy answer
 In favor
◦ Distributed computing is parallel computing on

geographically spread machines
 distributed  parallel  concurrent computing

 Against
◦ They address different issues
 Distributed computing is focused on issues related to

computation and data distribution
 Parallel computing does not address problems such as partial

failures
 Parallel computing focuses on tightly coupled applications

6 Marc Frincu

Source: http://courses.washington.edu/css434/slides/w03w04/Fundamentals.ppt

7 Marc Frincu

http://courses.washington.edu/css434/slides/w03w04/Fundamentals.ppt

 Cluster computing
◦ Centralized management of resources which are

available as orchestrated shared services

 Grid computing
◦ Collection of resources from different places working

together to reach a common goal
◦ Loosely coupled
◦ Heterogeneous
◦ Geographically dispersed

 Cloud computing
◦ On demand virtualized access to geographically

distributed resources
 Elastic
 Pay-per-use (economic model)
 Multiple layers of abstraction (IaaS, PaaS, SaaS, DaaS)

8 Marc Frincu

 “Cloud computing is a model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of configurable computing
resources (e.g., networks, servers, storage, applications, and services)
that can be rapidly provisioned and released with minimal management
effort or service provider interaction.” (NIST)

 Key characteristics
1. On demand access
 Storage, computational, network, applications

2. Broad network access
3. Pay-per-use policy
 Per hour, per minute, per Gb, per request

4. Resource pooling
 Virtually unlimited resources

5. Rapid elasticity
 Add/remove VM cores and memory, add/remove VMs

6. New programming paradigms
 MapReduce, Hadoop, NoSQL (Cassandra, MongoDB), …

7. Data intensive nature
 MBs have become TBs, PBs, ….

 Daily logs, web data, scientific data, …

9 Marc Frincu

10 Marc Frincu

Objectives

 Correction: absence of crash, race conditions,
deadlocks and other defects, …

 Performance: makespan, throughput,
economics, energy, ...

See http://simgrid.gforge.inria.fr/tutorials/simgrid-101.pdf for more details

11 Marc Frincu

http://simgrid.gforge.inria.fr/tutorials/simgrid-101.pdf
http://simgrid.gforge.inria.fr/tutorials/simgrid-101.pdf
http://simgrid.gforge.inria.fr/tutorials/simgrid-101.pdf
http://simgrid.gforge.inria.fr/tutorials/simgrid-101.pdf
http://simgrid.gforge.inria.fr/tutorials/simgrid-101.pdf

 Correction study → formal methods
◦ Tests: unable to provide definitive answers
◦ Model-checking: exhaustive and automated

exploration of state space

 Performance study → experimentation
◦ Math: often not sufficient to fully understand these

systems
◦ Experimental facilities: real applications on real

platform
◦ Emulation: real applications on synthetic platforms
◦ Simulation: prototypes of applications on system

models

12 Marc Frincu

Our focus

 Theoretical studies are not enough
◦ Clouds are highly complex
 Heterogenous, dynamic behavior, complex platforms, exascale
 Big Data (volume, variety, velocity, veracity)

 Simulation is the fastest path from idea to data

 Comfortable for users

◦ Get preliminary results from partial implementations
◦ Experimental campaign with thousands of runs within the week
◦ Test your scientific idea without dealing with technical subtleties

 Challenges for the simulators

◦ Validity: Get realistic results (controlled experimental bias)
◦ Scalability: Simulate fast enough problems big enough
◦ Associated tools: result analysis, settings generation, …
◦ Applicability: should simulate what is relevant to users

13 Marc Frincu

14 Marc Frincu

 Reproducible results: read a paper, reproduce the
results and improve

 Standard tools that grad students can learn quickly

 Current practice is quite different
◦ Experimental settings not detailed enough in literature
◦ Many short-lived simulators with few sound and

established tools
 Grid/Cloud: OptorSim, GridSim, GroudSim, CloudSim,

iCanCloud, . . .

 Volunteer computing: SimBA, EmBOINC, SimBOINC, . . .

 P2P: PeerSim, P2PSim, OverSim, . . .

 HPC: PSINS, LogGOPSim, BigSim, MPI-SIM, . . .

15 Marc Frincu

 Remember the cloud stack?
 Models for
◦ Hardware
 Network
 CPU
 Memory

◦ Virtualization
 Hypervisor

◦ OS
 OS level abstractions
 Resource management

◦ Application platform
 Cloud level management

◦ Applications
 Processes

Hardware

Virtualization
software

OS

Application Platform
(distributed)

Applications

16 Marc Frincu

Ia
a
S

P
a
a
S

S
a
a
S

 Scientific instrument
◦ Versatile: Grid, P2P, HPC, Volunteer Computing and others

◦ Sound: Validated, Scalable, Usable; Modular; Portable

◦ Open: Grounded +100 papers; 100 members on simgrid-
user@; LGPL

 Scientific object (and lab)
◦ Allows comparison of network models on non-trivial

applications

◦ Experimental Model-Checker; full Emulator under way

17 Marc Frincu

18 Marc Frincu

Our focus today

 CPU model
◦ Define CPU in flops and process size in flops

 Network model
◦ Many models, but most realistic

 Max-Min fairness model between network flows

 Objective: maximize the minimum flow

 Equilibrium: increasing any flow will decrease others

 Accounts for contention, slow-start, TCP congestion,
cross-traffic effects

◦ Define network bandwidth and latency, and process
bandwidth requirements

19 Marc Frincu

 Static topology

<platform version="3">
 <AS id="AS0" routing="Full">
 <host id="Horus" core="4" power="8095000000"/>
 <host id="Osyris" core="4" power="8095000000"/>
 <host id="Isis" core="4" power="8095000000"/>

 <link id="link1" bandwidth="125000000" latency="0.000100"/>
 <link id="link2" bandwidth="125000000" latency="0.000100"/>
 <link id="link3" bandwidth="125000000" latency="0.000500"/>

 <route src="Horus" dst="Osyris"><link_ctn id="link1"/></route>
 <route src="Horus" dst="Isis"><link_ctn id="link2"/></route>
 <route src="Osyris" dst="Isis"><link_ctn id="link3"/></route>

 </AS>
</platform>

 Dynamic traces for network bandwidth and host CPU speed

20 Marc Frincu

Horus

Osyris

Isis

link1

link2

link3

 Similar API as the one for using physical
machines

 VMs controllable similarly as in the real world
◦ Start/suspend/resume/shutdown/migrate

 Live migration
◦ Precopy algorithm
 Copy memory pages while VM is still running

 Slow downtime: few ms to secs

◦ “This model correctly calculates the migration time as
well as the migration traffic, taking account of resource
contention caused by other computations and data
exchanges within the whole system. This allows user to
obtain accurate results of dynamic virtualized systems.“

See http://simgrid.gforge.inria.fr/contrib/clouds-sg-doc.php

21 Marc Frincu

http://simgrid.gforge.inria.fr/contrib/clouds-sg-doc.php
http://simgrid.gforge.inria.fr/contrib/clouds-sg-doc.php
http://simgrid.gforge.inria.fr/contrib/clouds-sg-doc.php
http://simgrid.gforge.inria.fr/contrib/clouds-sg-doc.php
http://simgrid.gforge.inria.fr/contrib/clouds-sg-doc.php
http://simgrid.gforge.inria.fr/contrib/clouds-sg-doc.php
http://simgrid.gforge.inria.fr/contrib/clouds-sg-doc.php

 VMs are seen as ordinary
tasks by the host

 Tasks see VMs as ordinary
hosts

 Resource allocation

◦ Solve first at host level

◦ Then solve at VM level

See https://hal.inria.fr/hal-01197274

22 Marc Frincu

https://hal.inria.fr/hal-01197274
https://hal.inria.fr/hal-01197274
https://hal.inria.fr/hal-01197274
https://hal.inria.fr/hal-01197274
https://hal.inria.fr/hal-01197274

 Cloud platforms
◦ EC2 model as reference

 Functions similar to the EC2 API

◦ Users handle instances not VMs

 Many instance types

 Billing models

 Storage, transfer, compute

 Automatic VM placement on physical machines
See http://schiaas.gforge.inria.fr/

23 Marc Frincu

http://schiaas.gforge.inria.fr/
http://schiaas.gforge.inria.fr/

<clouds version="1">

 <cloud id="myCloud">

 <storage id="myStorage" engine="org.simgrid.schiaas.engine.storage.rise.Rise">

 <config controller="Horus"/>

 </storage>

 <compute engine="org.simgrid.schiaas.engine.compute.rice.Rice">

 <config controller="Horus"

 image_storage="myStorage"

 image_caching="PRE“

 inter_boot_delay="10"/>

 <instance_type id="small" core="1" memory="1000" disk="1690"/>

 <instance_type id="medium" core="2" memory="1000" disk="1690"/>

 <instance_type id="large" core="4" memory="1000" disk="1690"/>

 <image id="myImage" size="1073741824"/>

 <host id="Osyris"/>

 <host id="Isis"/>

 </compute>

 </cloud>

</clouds>

24 Marc Frincu

 Applications as processes that contain a
certain number of tasks to execute, have CPU
and network requirements and can be
executed on several machines

<process host="Horus" function="cloud.schiaas.Master">

 <argument value="10"/> <!-- Number of tasks -->

 <argument value="5e10"/> <!-- Computation size of tasks -->

 <argument value="1000000"/> <!-- Communication size of tasks -->

 <argument value="10"/> <!-- Number of slave processes -->

 </process>

25 Marc Frincu

 We left this one for the end

 Resource management
◦ Cloud (virtualized) level

 Tasks to VMs

◦ Physical level
 Processes to physical machines

 VMs to physical machines

◦ Users can implement their own scheduling algorithms
 Design, test, validate

 Load injectors

◦ At cloud level by default (built on Simgrid)

 RICE: Reduced Implementation of Compute Engine

 RISE: Reduced Implementation of Storage Engine

 Tasks2VM: Simschlouder http://schiaas.gforge.inria.fr/javadoc/simschlouder/index.html

 VMs2Hosts: Schiaas http://schiaas.gforge.inria.fr/javadoc/schiaas/index.html

<cloud id="myCloud">

 <scheduler controller="controller"

 delay="100"

 type="balancer"

 name="org.simgrid.schiaas.engine.compute.scheduler.simplescheduler.SimpleScheduler"/>

</cloud>

26 Marc Frincu

http://schiaas.gforge.inria.fr/javadoc/simschlouder/index.html
http://schiaas.gforge.inria.fr/javadoc/simschlouder/index.html
http://schiaas.gforge.inria.fr/javadoc/schiaas/index.html
http://schiaas.gforge.inria.fr/javadoc/schiaas/index.html

 Scriptable visualization

◦ Scalable tools

 Right information

◦ Platform and applicative visualizations

 Right representation

◦ Gantt charts, spatial representations, tree-graphs

 Easy navigation in space and time

◦ Selection, aggregation, animation

 Easy trace comparison

 R, Excel, custom built applications

27 Marc Frincu

Questions?

28 Marc Frincu

