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 “A collection of (probably heterogeneous) automata whose distribution is transparent to 
the user so that the system appears as one local machine. This is in contrast to a 
network, where the user is aware that there are several machines, and their location, 
storage replication, load balancing and functionality is not transparent. Distributed 
systems usually use some kind of client-server organization.” – FOLDOC  

 “ 
 A Distributed System comprises several single components on different computers, 

which normally do not operate using shared memory and as a consequence 
communicate via the exchange of messages. The various components involved 
cooperate to achieve a common objective such as the performing of a business process.” 
– Schill & Springer 

 

 Main characteristics 
◦ Components: 

 Multiple spatially separated individual components 

 Components posses own memory  

 Cooperation towards a common objective 

◦ Resources: 
 Access to common resources (e.g., databases, file systems)  

◦ Communication: 
 Communication via messages  

◦ Infrastructure: 
 Heterogeneous hardware infrastructure & software middleware 
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 These definitions do not define the insides of a distributed 
system 

◦ Design and implementation 

◦ Maintenance 

◦ Algorithmics (i.e., protocols) 
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Facebook social network graph. 

The Internet color coded by ISPs. 
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 “A distributed system (DS) is a collection of entities, each of 
which is autonomous, programmable, asynchronous and 
failure-prone, and which communicate through an unreliable 
communication medium, appearing to the end user as a 
single coherent system.” 

 

 Key terms 
◦ Entity = process on a device (PC, server, tablet, smartphone) 

◦ Communication medium = wired or wireless network 
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 Parallelism 
◦ Perform multiple tasks at the same time 
◦ True parallelism requires distribution on multiple processors/cores/machines 
◦ Can range from many core to multi processor to many computer on shared or 

distributed memory 

 Concurrency 
◦ Computations with multiple threads 
◦ Can exploit hardware parallelism but it is inherently related to the software need (i.e., 

react to different asynchronous events) 
◦ Concurrency becomes parallelism if parallelism is real (one thread per 

processor/core/machine) not virtual 

 Distributed computing 
◦ Related to where the computation physically resides 

 Distributed algorithm is executed on multiple CPUs, connected by networks, buses or 
any other data communication channel 

◦ Computers are connected by communication links on distributed memories 
 Rely fundamentally on message passing 

◦ Usually part of the goal  
 If resources are geographically spread than the system is inherently distributed 
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 Is distributed computing a subset of parallel 
computing? 

 Not an easy answer 
 In favor 
◦ Distributed computing is parallel computing on 

geographically spread machines 
 distributed  parallel  concurrent computing 

 Against 
◦ They address different issues 
 Distributed computing is focused on issues related to 

computation and data distribution 
 Parallel computing does not address problems such as partial 

failures 
 Parallel computing focuses on tightly coupled applications 
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Source:  http://courses.washington.edu/css434/slides/w03w04/Fundamentals.ppt  
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 Cluster computing 
◦ Centralized management of resources which are 

available as orchestrated shared services 

 Grid computing 
◦ Collection of resources from different places working 

together to reach a common goal 
◦ Loosely coupled  
◦ Heterogeneous 
◦ Geographically dispersed 

 Cloud computing 
◦ On demand virtualized access to geographically 

distributed resources 
 Elastic 
 Pay-per-use (economic model) 
 Multiple layers of abstraction (IaaS, PaaS, SaaS, DaaS) 
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 “Cloud computing is a model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of configurable computing 
resources (e.g., networks, servers, storage, applications, and services) 
that can be rapidly provisioned and released with minimal management 
effort or service provider interaction.” (NIST) 
 

 Key characteristics 
1. On demand access 
 Storage, computational, network, applications 

2. Broad network access 
3. Pay-per-use policy 
 Per hour, per minute, per Gb, per request 

4. Resource pooling 
 Virtually unlimited resources 

5. Rapid elasticity 
 Add/remove  VM cores and memory, add/remove VMs 

6. New programming paradigms 
 MapReduce, Hadoop, NoSQL (Cassandra, MongoDB), … 

7. Data intensive nature 
 MBs have become TBs, PBs, …. 

 Daily logs, web data, scientific data, … 
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Objectives 

 

 Correction: absence of crash, race conditions, 
deadlocks and other defects, … 

 Performance: makespan, throughput, 
economics, energy, ... 

 

 

 

 

See http://simgrid.gforge.inria.fr/tutorials/simgrid-101.pdf for more details 
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 Correction study  → formal methods 
◦ Tests: unable to provide definitive answers 
◦ Model-checking: exhaustive and automated 

exploration of state space 

 Performance study → experimentation 
◦ Math: often not sufficient to fully understand these 

systems 
◦ Experimental facilities: real applications on real 

platform 
◦ Emulation: real applications on synthetic platforms 
◦ Simulation: prototypes of applications on system 

models 
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 Theoretical studies are not enough 
◦ Clouds are highly complex 
 Heterogenous, dynamic behavior, complex platforms, exascale  
 Big Data (volume, variety, velocity, veracity) 

 
 Simulation is the fastest path from idea to data 

 
 Comfortable for users 

◦ Get preliminary results from partial implementations 
◦ Experimental campaign with thousands of runs within the week 
◦ Test your scientific idea without dealing with technical subtleties 

 
 Challenges for the simulators 

◦ Validity: Get realistic results (controlled experimental bias) 
◦ Scalability: Simulate fast enough problems big enough 
◦ Associated tools: result analysis, settings generation, … 
◦ Applicability: should simulate what is relevant to users 
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 Reproducible results: read a paper, reproduce the 
results and improve 

 

 Standard tools that grad students can learn quickly 

 

 Current practice is quite different 
◦ Experimental settings not detailed enough in literature 
◦ Many short-lived simulators with few sound and 

established tools 
 Grid/Cloud: OptorSim, GridSim, GroudSim, CloudSim, 

iCanCloud, . . . 

 Volunteer computing: SimBA, EmBOINC, SimBOINC, . . . 

 P2P: PeerSim, P2PSim, OverSim, . . . 

 HPC: PSINS, LogGOPSim, BigSim, MPI-SIM, . . . 
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 Remember the cloud stack? 
 Models for 
◦ Hardware 
 Network 
 CPU 
 Memory 

◦ Virtualization 
 Hypervisor 

◦ OS 
 OS level abstractions 
 Resource management 

◦ Application platform 
 Cloud level management 

◦ Applications 
 Processes 

 
 

Hardware 

Virtualization 
software 

OS 

Application Platform 
(distributed) 

Applications 
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 Scientific instrument 
◦ Versatile: Grid, P2P, HPC, Volunteer Computing and others 

◦ Sound: Validated, Scalable, Usable; Modular; Portable 

◦ Open: Grounded +100 papers; 100 members on simgrid-
user@; LGPL 

 Scientific object (and lab) 
◦ Allows comparison of network models on non-trivial 

applications 

◦ Experimental Model-Checker; full Emulator under way 
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 CPU model 
◦ Define CPU in flops and process size in flops 

 Network model 
◦ Many models, but most realistic 

 Max-Min fairness model between network flows 

 Objective: maximize the minimum flow 

 Equilibrium: increasing any flow will decrease others 

 Accounts for contention, slow-start, TCP congestion, 
cross-traffic effects 

◦ Define network bandwidth and latency, and process 
bandwidth requirements 
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 Static topology 
 
<platform version="3"> 
  <AS  id="AS0"  routing="Full"> 
    <host id="Horus" core="4" power="8095000000"/> 
    <host id="Osyris" core="4" power="8095000000"/> 
    <host id="Isis" core="4" power="8095000000"/> 
  
    <link id="link1" bandwidth="125000000" latency="0.000100"/> 
    <link id="link2" bandwidth="125000000" latency="0.000100"/> 
    <link id="link3" bandwidth="125000000" latency="0.000500"/> 
 
    <route src="Horus" dst="Osyris"><link_ctn id="link1"/></route> 
    <route src="Horus" dst="Isis"><link_ctn id="link2"/></route> 
    <route src="Osyris" dst="Isis"><link_ctn id="link3"/></route> 
    
  </AS> 
</platform> 
 

 Dynamic traces for network bandwidth and host CPU speed 
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 Similar API as the one for using physical 
machines 

 VMs controllable similarly as in the real world 
◦ Start/suspend/resume/shutdown/migrate  

 Live migration 
◦ Precopy algorithm 
 Copy memory pages while VM is still running 

 Slow downtime: few ms to secs 

◦ “This model correctly calculates the migration time as 
well as the migration traffic, taking account of resource 
contention caused by other computations and data 
exchanges within the whole system. This allows user to 
obtain accurate results of dynamic virtualized systems.“ 

See http://simgrid.gforge.inria.fr/contrib/clouds-sg-doc.php  
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 VMs are seen as ordinary 
tasks by the host 

 Tasks see VMs as ordinary 
hosts 

 Resource allocation 

◦ Solve first at host level 

◦ Then solve at VM level 
 

 

 

 

 

 

 

 

 

See https://hal.inria.fr/hal-01197274 
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 Cloud platforms 
◦ EC2 model as reference 

 Functions similar to the EC2 API 

◦ Users handle instances not VMs 

 Many instance types 

 Billing models 

 Storage, transfer, compute 

 Automatic VM placement on physical machines 
See http://schiaas.gforge.inria.fr/  
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<clouds version="1"> 

  <cloud  id="myCloud">             

    <storage id="myStorage" engine="org.simgrid.schiaas.engine.storage.rise.Rise"> 

      <config controller="Horus"/> 

    </storage> 

     

    <compute engine="org.simgrid.schiaas.engine.compute.rice.Rice">           

      <config controller="Horus"   

                               image_storage="myStorage"  

                               image_caching="PRE“                                          

                               inter_boot_delay="10"/> 

                         

      <instance_type id="small" core="1" memory="1000" disk="1690"/>                           

      <instance_type id="medium" core="2" memory="1000" disk="1690"/> 

      <instance_type id="large" core="4" memory="1000" disk="1690"/> 

                         

      <image id="myImage" size="1073741824"/> 

                 

      <host id="Osyris"/> 

      <host id="Isis"/> 

    </compute> 

  </cloud> 

</clouds>  
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 Applications as processes that contain a 
certain number of tasks to execute, have CPU 
and network requirements and can be 
executed on several machines 

 
<process host="Horus"  function="cloud.schiaas.Master"> 

     <argument value="10"/>       <!-- Number of tasks --> 

     <argument value="5e10"/>  <!-- Computation size of tasks --> 

     <argument value="1000000"/>   <!-- Communication size of tasks --> 

     <argument value="10"/>  <!-- Number of slave processes --> 

  </process> 
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 We left this one for the end 
 

 Resource management 
◦ Cloud (virtualized) level 

 Tasks to VMs 

◦ Physical level 
 Processes to physical machines 

 VMs to physical machines 

◦ Users can implement their own scheduling algorithms  
 Design, test, validate 

 Load injectors 

◦ At cloud level by default (built on Simgrid) 

 RICE: Reduced Implementation of Compute Engine 

 RISE: Reduced Implementation of Storage Engine 

 Tasks2VM: Simschlouder http://schiaas.gforge.inria.fr/javadoc/simschlouder/index.html  

 VMs2Hosts: Schiaas http://schiaas.gforge.inria.fr/javadoc/schiaas/index.html  

 

<cloud  id="myCloud"> 

  <scheduler controller="controller"  

                     delay="100"  

                     type="balancer"                     

                     name="org.simgrid.schiaas.engine.compute.scheduler.simplescheduler.SimpleScheduler"/> 

</cloud> 
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 Scriptable visualization 

◦ Scalable tools 

 Right information 

◦ Platform and applicative visualizations 

 Right representation 

◦ Gantt charts, spatial representations, tree-graphs 

 Easy navigation in space and time 

◦ Selection, aggregation, animation 

 Easy trace comparison 

 

 

 R, Excel, custom built applications 
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Questions? 
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