
Evaluating Distributed Systems and
Applications through Accurate Models and
Simulations

Marc Frincu, Bogdan Irimie, Teodora Selea, Adrian Spataru, Anca Vulpe

Abstract Evaluating the performance of distributed applications can be performed
by in situ deployment on real-life platforms. However, this technique requires ef-
fort in terms of time allocated to configure both application and platform, execution
time of tests, and analysis of results. Alternatively, users can evaluate their appli-
cations by running them on simulators on multiple scenarios. This provides a fast
and reliable method for testing the application and platform on which it is executed.
However, the accuracy of the results depend on the cross-layer models used by the
simulators. In this chapter we investigate some of the existing models for represent-
ing both applications and the underlying distributed platform and infrastructure. We
focus our presentation on the popular SimGrid simulator. We emphasize some best
practices and conclude with few control questions and problems.

1 Introduction

A distributed system (DS) is a collection of entities (e.g., process or device) which
communicate through a communication medium (e.g., wired or wireless network)
appearing to end users as a single coherent system. The entities are characterized

Marc Frincu
West University of Timisoara Romania, e-mail: marc.frincu@e-uvt.ro – contact author

Bogdan Irimie
West University of Timisoara Romania e-mail: bogdan.irimie90@e-uvt.ro

Teodora Selea
e-Austria Research Institute Timisoara Romania e-mail: teodora.selea93@e-uvt.ro

Adrian Spataru
e-Austria Research Institute Timisoara Romania e-mail: florin.spataru92@e-uvt.ro

Anca Vulpe
West University of Timisoara Romania e-mail: anca.vulpe94@e-uvt.ro

1



2 Marc Frincu, Bogdan Irimie, Teodora Selea, Adrian Spataru, Anca Vulpe

by autonomicity, programmability, asynchronicity, and failure-proneness, while the
communication medium is usually unreliable.

Distributed systems enable a form of parallel computing, namely distributed
computing, where computation and data is geographically spread, but the applica-
tions have parallel tasks processing the same or different parts of the data at the
same time.

Designing and testing platforms and application on top of them require therefore
specific configurations which due to the nature of the DS may be out of reach of
researchers and software engineers. In addition, real-life systems may not offer the
complexity and specific setup required by some applications. In situ experiments
need therefore to be replaced with a more economic and flexible alternative in which
the DS can still be properly modeled. The complexity of DSs (e.g., clouds) make
theoretical models not viable as the large number of parameters required to model
heterogeneity, dynamism, exascale, and Big Data leads to systems which are too
complex to be modeled through mathematics alone.

Simulations offer the fastest path from idea to its testing. They enable users
to get preliminary results from partial implementations and to improve their algo-
rithms, applications, and platforms quickly and under various settings and assump-
tions. They also allow experiments on thousands of configurations fast at no cost
and without having to wait in line for available resources. Finally, they allow users
to bypass any technical challenges posed by the platform and DS letting them fo-
cus on the application itself. Figure 1 depicts the usual simulation flow from idea,
experimental setup and model to scientific results.

Despite their advantages, simulations face several challenges including:

• Validity: Results obtained through simulations should match or be close to those
obtained in real-life experiments. Approximations in any simulation should be
quantifiable such that any result would be mapped to its real-life equivalent. For
instance, Virtual Machine (VM) boot and stop times which could be ignored in
simulations should not impact the outcome of real-life deployment as predicted
by the simulation. Furthermore, the accuracy of underlying is essential in val-
idating the experiments. Extensive tests of SimGrid and comparison with other
simulators have outlined strange behaviors in the network modeling of simulators
such as OptorSim, GridSim, and CloudSim [18].

• Scalability: Any simulation should scale with the experiment size to allow fast
exploration of scenarios of several orders of magnitude. For instance, the simu-

Fig. 1 Simulation flow [7].



Title Suppressed Due to Excessive Length 3

lation time of a single scenario should not exceed in any case the validation on
real-life DSs.

• Tools: Simulation results are usually numerically encoded and contain lots of
data unreadable in raw format. Furthermore, if multiple scenarios are tested the
visual analysis of the raw data is practically impossible. Hence, automated tools
for visual analysis are required. In addition, to avoid the time consuming manual
generation of hundreds or thousands of experiment settings, automatic generation
based on customized parameters is necessary.

• Applicability: Simulations should match the user requirements and objectives.
Hence, the underlying models should closely match real-life scenarios while the
simulation output should match the desired goals.

Fundamentally, to enable a good simulation sound models are required across the
simulated platform layers. These models are essential both for the validity and ap-
plicability of the simulation. In this chapter we focus on cloud simulators as clouds
are widely researched and new algorithms for numerous problems are developed
constantly. Despite being around for more than a decade clouds have yet to unveil
their full potential with Big Data and Internet of Things promising new challenges
for clouds. Simulations will play an essential role in driving the next wave of algo-
rithms for topics including Big Data processing, job scheduling in hybrid systems
and architectures, and Quality of Service assurance.

The rest of the chapter introduces cloud computing and cloud simulators (cf.
Sect. 2, then it moves on to discuss the assessment methods of a distributed appli-
cation (cf. Sect. 3, gives an overview of platform cross layer models (cf. Sect. 4)
and details each of them (cf. Sect. 5, Sect. 6, and Sect 7), discusses the importance
of simulation data (cf. Sect. 8), concluding with general remarks (cf. Sect. 9) and
few chapter control questions and problems (cf. Sect. 10). The model layers are
presented by mirroring the ones existing in the SimGrid simulator [3] and SchIaaS
extension [6].

2 Cloud Computing

According to NIST, ”cloud computing is a model for enabling ubiquitous, con-
venient, on-demand network access to a shared pool of configurable computing
resources (e.g., networks, servers, storage, applications, and services) that can
be rapidly provisioned and released with minimal management effort or service
provider interaction“ [19].

Cloud computing is characterized by:

• On demand access to storage, computational and network resources, platforms,
and applications

• Broad network access
• Pay-per-use policy varying between resource types and providers. Examples in-

clude per hour, per minute, per Gb, per request



4 Marc Frincu, Bogdan Irimie, Teodora Selea, Adrian Spataru, Anca Vulpe

• Resource pooling with virtually unlimited resources for users
• Rapid elasticity which allows users to horizontally (e.g., adding new/removing

VMs) or vertically (e.g., adding new/removing VM cores and memory) scale
based on demand

• New programming paradigms such as MapReduce, Hadoop, NoSQL (Cassan-
dra, MongoDB)

• Big Data where the large cloud data centers can now store PBs of data coming
from the research community (e.g., astrophysical data, meteorological data) or
industry (e.g., social network data, banking data) .

All these features are stored in a layered cloud stack (cf. Fig. 2). The Infrastruc-
ture as a Service (IaaS) offers direct access to virtualized resources being targeted as
network architects and cloud administrators. The Platform as a Service (PaaS) of-
fers OS level functions to application developers, and finally, Software as a Service
(SaaS) targets end users by exposing fully fledged applications. The as a Service
model extends beyond these initial three layers and comprises Data as a Service
(DaaS) to emphasize the Big Data stored and accessible in clouds, Network as a
Service (NaaS), Communication as a Service (CaaS), and Monitoring as a Service
(MaaS)

To simulate such complex environments various simulators have been proposed.
Next, we briefly compare them before looking at what a good simulation should
offer and what are the cloud simulation layers.

2.1 Cloud Simulators

Over the years many simulators, some of them short lived, others widely used in
literature and well documented and validated, have been devised. Many of them
started as grid simulators have slowly evolved in generic cloud simulators [3]. Oth-

Fig. 2 Cloud stack.



Title Suppressed Due to Excessive Length 5

ers [2] have evolved into cloud simulators by borrowing from other the underlying
models, or were designed from scratch [20].

Despite many of the simulators being generic, there are also corner cases where
custom built solutions are required. As example IoT applications are becoming bet-
ter integrated with the cloud and they give birth to another layer between the cloud
and the IoT devices called fog. A simulator that addresses this corner case and based
on CloudSim is presented in [13].

For a detailed classification of cloud simulators we direct the readers to [1] and
[24].

Table 1 Recommended cloud simulators depending on user priorities [24]

.

Scenario C
lo

ud
Si

m
G

re
en

C
lo

ud
iC

an
C

lo
ud

N
et

w
or

kC
lo

ud
Si

m
C

lo
ud

A
na

ly
st

G
ou

nd
Si

m
C

D
O

Si
m

M
D

C
Si

m
G

D
C

Si
m

SP
E

C
I

B
ig

H
ou

se
Te

ac
hC

lo
ud

Si
m

G
ri

d

Simple state sharing problem / High number of Nodes (>10k
Nodes) 3 5 5 5 5 3 5 5 5 3 3 3 3

Energy efficiency / Energy aware scheduling 5 3 3 5 5 5 5 5 5 5 5 5 5
Energy efficiency / Cooling 5 5 5 5 5 5 5 5 3 5 5 5 5
High availability / Fault tolerance 3 3 5 5 5 3 5 5 5 5 5 5 3
Network modeling and network-aware scheduling 5 3 5 3 5 5 5 3 5 3 5 5 3
Workload planning / evaluation 3 3 5 5 3 5 5 3 5 5 3 5 3
Workflow Modeling 3 3 5 5 5 3 5 5 5 5 5 5 3

Resource allocation 3 3 3 3 3 5 5 3 5 5 3 3 3
Service brokering 3 5 3 5 3 5 3 5 5 5 5 5 5
Storage modeling 5 5 3 5 5 5 5 5 5 5 3 3 3
GUI / Easy Use 5 5 3 5 3 5 5 5 5 3 5 3 3
High request/job load (>10k requests) 3 3 3 3 3 3 3 3 5 3 3 3 3
MapReduce Application Modeling/Data Replication 3 3 5 5 5 5 5 5 5 5 3 3 3

Currently, CloudSim is one of the most used cloud simulator and there are a
large number of related projects like [27] [22] [25] and others. Its main advantage
is that it offers the building blocks for modeling complex cloud infrastructure and
applications that run atop them. The entire code is written in Java.

A different simulator which focuses on DSs but which has support for clouds is
SimGrid [3]. It relies on well tested models across the simulated system stack and
extensions are built frequently. The code is written in C but has Java, Ruby, and Lua
bindings which makes it suitable for a wider audience. SimGrid does not offer cloud
support directly but does expose a VM migration and execution model. Based on it,
cloud extensions have been proposed with an updated list available at [4].

One main drawback of today’s simulators is that they do not have accurate mod-
els for system/application failures. In a DS, components fail all the time and those
failures can affect the overall system performance. Another major drawback is that
there is no extensive validation for many of the simulators and thus there can be big



6 Marc Frincu, Bogdan Irimie, Teodora Selea, Adrian Spataru, Anca Vulpe

discrepancies between results obtained using the simulators and experiments on real
cloud infrastructures due to poor or simplistic models.

3 Assessment of Applications

When assessing cloud applications users are usually interested in its correctness and
performance. Each is quantified through various metrics depending on the applica-
tion objectives. Hence correctness can be modeled through the absence of crashes,
race conditions or deadlocks. Performance indicators usually address makespan,
throughput, energy consumption or running costs. A comprehensive overview of
client side objectives is given in our previous work [10].

Due to the complexity of the environment the correction study for a cloud ap-
plication relies on model-checking as it allows an exhaustive automated exploration
of the state space to identify issues. Instead, performance studies rely on simu-
lations to test prototype applications on system models in scenarios unavailable on
real-life systems and where math is insufficient to understand the behavior of the ap-
plications. An alternative to simulations could be emulations which rely on testing
real-life applications on synthetic systems.

In simulations a key requirement is the reproducibility of simulation results
which allows users to rerun the same experimental setup described in a paper to
benchmark on a different data set or to compare with a different approach. However,
one of the main problems in literature is the lack of sufficient details and that of
publicly available source codes on which the experiments were based on.

Another important aspect when running simulations is to have access to stan-
dard tools which users can learn quickly without having to code their own software
or to learn several simulators for different simulation objectives. In practice, there
are lots of custom made shot lived simulators which do not provide insight on the
models used to simulate the cloud systems or make assumptions which may not be
valid. Furthermore, their validity has not been thoroughly tested despite being used
in many research papers [7].

By having failures inserted in the simulations, we can observe how application
behaves under abnormal conditions and establish limits in the amount of failures
that our application can cope with.

4 Modeling Layers

When designing a cloud simulation and simulator, the entire cloud stack needs to
be considered to ensure a proper representation of the real-life environment. For
each of the layers, accurate models need to be implemented and validated on large
amounts of data to ensure the validity of the subsequent simulations.

Hence, the following minimal list of models should be implemented:



Title Suppressed Due to Excessive Length 7

1. Bare metal models

• Hardware models for CPU, network, memory;

2. Virtualization models

• Models for hypervisors;

3. Cloud models

• IaaS level management similar to existing providers’ APIs;
• OS level (PaaS) models for proper abstractions and resource management;
• Models for simplistic yet accurate process/application representation.

Next, we give an overview of each of them by providing implementation exam-
ples with reference to the SimGrid simulator.

5 Hardware Model

At the hardware model level simulators need to consider CPU and network.
CPU processing speed s is usually expressed in flops (floating point operations

per second) which means that processes running on them should be specified in
terms of required floating point operations r. At this level modeling is trivial since
in order to get the execution time of a process we simply have to compute r/s.

In resource sharing environments it is possible to model CPU sharing and to
introduce CPU availability traces to model the fluctuation of the CPU speed.

However, modern architecture are usually parallel machines with multiple cores
and processors. These architectures are usually modeled by having an array a which
describes the number of floating point operations that each processor has to execute
and a matrix B which describes the communication pattern [15]. This enables the
modeling of:

• Fully parallel tasks: a 6= 0 and B = 0;
• Data redistribution tasks: a = 0 and B 6= 0;
• Tasks with communication: a 6= 0 and B 6= 0.

The model can be further extended to account for inter-processor cache sharing,
memory, and compiler/OS particularities.

Network modeling is more complex and needs to account for latency, bandwidth
sharing, and TCP congestion in order to obtain realistic simulations. Several simu-
lation models exist in literature:

• Delay-based models: are the simplest network models. They allow the modeling
of communication time through statistical models, constants (e.g., latency), and
geographical coordinate systems to account for geographic proximity. The mo-
tivation behind these models is that end-to-end delay greatly affects the perfor-
mance of applications running on the network [11]. One of their main drawbacks



8 Marc Frincu, Bogdan Irimie, Teodora Selea, Adrian Spataru, Anca Vulpe

is that they ignore network congestion and assume large bisection bandwidth
(i.e., the available bandwidth between endpoints).

• Packet level models: capture the behavior and interaction of individual packets
through complex models. Examples of simulators taking this approach include
GTNetS [21], NS2 [16] which simulate the entire protocol stack.

• Flow level models: simulate the entire communication flow as a single entity
Ti, j(S) = Li, j + S/Bi, j, where S represents the message size, Li, j is the latency
between endpoints i and j, and Bi, j represents the bandwidth. The model assumes
a steady-state and bandwidth sharing each time a new flow appears or disappears.
Given a flow φk and the capacity of the link C j the constraint is to have ∑k φk <C j.
Several algorithms including Max-Min fairness, Vegas, and Reno exist. In case of
Max-Min fairness the objective is to maxmin(φk) with the equilibrium reached
when increasing any flow φl decreases a given flow φk. As such it tries to give a
fair share to all flows sharing the link.

Besides models for simulating data flows the hardware model also comprises of
models of the topology. In SimGrid for instance, a DS is represented as a static
topology as seen in the following simple example1 which defines an autonomous
system with full routing comprised of three machines linked together as in Fig. 3:

<platform version="3">
<AS id="AS0" routing="Full">
<host id="Horus" core="4" power="8095000000"
availability_file="horus_avail.trace"
state_file="horus.state" />

<host id="Osyris" core="4" power="8095000000"/>
<host id="Isis" core="4" power="8095000000"/>

<link id="link1" bandwidth="125000000"
latency="0.000100" bandwidth_file="link1.bw"
latency_file="link1.lat"/>

<link id="link2" bandwidth="125000000"
latency="0.000100"/>

<link id="link3" bandwidth="125000000"
latency="0.000500"/>

<route src="Horus" dst="Osyris"><link_ctn id="link1"/>
</route>
<route src="Horus" dst="Isis"><link_ctn id="link2"/>
</route>
<route src="Osyris" dst="Isis"><link_ctn id="link3"/>
</route>
</AS>

</platform>

1 Full documentation available at: http://simgrid.gforge.inria.fr/simgrid/3.12/doc/platform.html



Title Suppressed Due to Excessive Length 9

where power is in flops, latency is in seconds, and bandwidth is in bytes/second.
While the topology is fixed there is the option to define traces for CPU, bandwidth
and latency fluctuations (e.g., the cases of horus host and link2), and availability
periods (e.g., simulate failures).

Fig. 3 Simple DS topology.

6 Hypervisor Model

While the previous hardware models enable the simulation of DS such as grids,
clouds require a virtualization layer where the hypervisor (e.g., Xen, KVM, VMWare)
can create and execute VMs.

To enable a seamless transition from simulation to real-life deployment models
should mimic the real systems. Hence the user level API should match that of exist-
ing hypervisors with functions for starting, stopping, pausing, and resuming VMs.

Simulators such as SimGrid implement [14] such APIs and offer models for live
migration as well.

To enable VM management two resource constraint problem need to be solved,
at physical level, and at virtualized level. In SimGrid for instance, VMs are seen as
an ordinary task executed on the physical machine. Basically, to place VMs along
side regular tasks the simulator first computes the share of the host for each of
them. Then, for each VM it computes the shares of tasks running on them using
the allocated shared by the host as maximum. For instance if a host has a capacity
C and there are 2 VMs and one task allocated to it it first solves the constraint
SV M1 + SV M2 + St < C, where S∗ represents the share of the host to be allocated.
Second, once SV M1 and SV M2 are determined, assuming V M1 will execute 2 tasks
and V M2 one task, it solves the constraints St1 + St2 < SV M1 and St3 < SV M2 . In
addition, task priorities and VM CPU usage capping can be specified.

Once a hypervisor model is in place, the live migration of VMs needs to be
modeled too. This capability is at the core of activities involving system mainte-
nance, load balancing, energy efficiency, reconfiguration and fault tolerance. Some
simulators such as CloudSim let users specify the migration time but this approach



10 Marc Frincu, Bogdan Irimie, Teodora Selea, Adrian Spataru, Anca Vulpe

is simplistic. Default live migration policies can be overridden hence allowing for
some flexibility and testing of new algorithms.

In SimGrid, the precopy live migration algorithm is implemented, however in
literature other well-known algorithms such as post copy and hybrid exist. A de-
tailed overview and analysis of their performance is given in [23]. The reason for
implementing the precopy algorithm is its popularity among well-known hypervi-
sors such as Xen, KVM, and VMWare.

• Precopy: the algorithm iteratively copies memory pages of the VM from the
source host to the destination. First, it copies all memory pages. At subsequent
steps it copies only the modified pages, and repeats this step until the number
of modified pages is small enough. At this stage it stops the VM and copies the
remaining dirty pages to the destination. Finally, it restarts the VM at the destina-
tion. The entire process takes from few ms to seconds. The algorithm is reliable
and robust as the entire process can be rolled back if the migration fails.

• Postcopy: the algorithm first stops the VM and then copies using demand and
pre-paging techniques over the network. First, the VM makes some initial prepa-
ration of resources. Then, the VM is stopped and the execution states are trans-
ferred and switched on at the destination host to resume the VM. During this
phase the VM is down. After the states have been transferred and the VM has re-
sumed the memory page will be copied. In this algorithm the transferred VM will
start immediately but will suffer from performance penalties from network page
faults. The performance of this algorithm is highly dependent on the workload
and hence choosing it requires a deep analysis with different workloads.

• Hybrid: the algorithm is a special version of postcopy where a limited number
of precopy stages are applied a priori. The algorithm is useful in cases where we
want to balance the reliability of precopy with speed of postcopy.

Depending on whether or not users want to investigate live migration algorithms
simulators can offer extensible constructs to enable their validation by relying on
the hardware models.

7 Cloud Model

With a virtualization model in place simulators can be augmented with support for
cloud models. These models should mimic the layered cloud architecture at IaaS
and PaaS with support for running applications at each one. Simulators should be
generic and extensible to allow the insertion of new cloud engines. Popular cloud
IaaS models include the Amazon EC2 model of instances and billing. The complex-
ity and level of Amazon EC2 services has enabled a vast collection of EC2 compat-
ible APIs in various cloud software platforms such as Eucalyptus, OpenStack, and
OpenNebula to name a few.

Contrary to the hypervisor layer, in the cloud layer users handle instances not
VMs. These instances have several characteristics including type and billing model,



Title Suppressed Due to Excessive Length 11

and are automatically placed on hosts by the hypervisor. In SimGrid, users can
access cloud IaaS APIs through the SchIaas extension, while PaaS level resource
management for bag-of-tasks and workflow applications can be handled through
SimSchlouder.

7.1 Infrastructure Model

In SimGrid, the cloud topology including compute and storage services, instance
types, instance images, and the physical infrastructure to host the VMs algorithms
is defined in a file similar to the simple example below:

<clouds version="1">
<cloud id="myCloud">
<storage id="myStorage"

engine="org.simgrid.schiaas.engine.storage.rise.Rise">
<config controller="Horus"/>

</storage>

<compute
engine="org.simgrid.schiaas.engine.compute.rice.Rice">
<config controller="Horus" image_storage="myStorage"

image_caching="PRE inter_boot_delay="10"/>

<instance_type id="small" core="1" memory="1000"
disk="1690"/>
<instance_type id="medium" core="2" memory="1000"
disk="1690"/>
<instance_type id="large" core="4" memory="1000"
disk="1690"/>

<image id="myImage" size="1073741824"/>

<host id="Osyris"/>
<host id="Isis"/>

</compute>
</cloud>
</clouds>

The IaaS model usually has two views. The cloud client view available to end
users where compute instances and storage can be handled; and the cloud provider
view where cloud IaaS administrators handle VM to host placement and other cloud
infrastructure management activities. In SimGrid, the provider view is handled by
default by the RICE (Reduced Implementation of Compute Engine) and RISE (Re-
duced Implementation of Storage Engine) engines.



12 Marc Frincu, Bogdan Irimie, Teodora Selea, Adrian Spataru, Anca Vulpe

7.2 Platform Model

At PaaS level simulators usually provide functionality and models for simulating
application execution. Resource management for simulating bag-of-tasks and work-
flow applications is an example of such functionality.

At this level users can test scheduling algorithms on various applications, and
cloud and infrastructure topologies by relying on the simulator models for compu-
tation, communication, virtualization, and cloud. For simulators such as SimGrid
this is the where users take advantage of the full simulator stack to propose new
models for cloud resource management.

7.3 Application Model

To simulate applications we require simplistic yet comprehensive models for them.
Required information should be mapped on the underlying models, namely on the
computation and communication models. The following simple example specifies
a process that will spawn a job with 10 tasks with predefined size in floating point
operations and communication size in bytes.

<process host="Horus" function="cloud.schiaas.Master">
<!-- Number of tasks -->
<argument value="10"/>
<!-- Computation size of tasks -->
<argument value="5e10"/>
<!-- Communication size of tasks -->
<argument value="1000000"/>
<!-- Number of slave processes -->
<argument value="10"/>
</process>

8 Simulation Data

Traces for platform and application bring the simulated application and DS closer
to the behavior of real-life systems. Traces can be either synthetic or from real-life
systems. Synthetic traces are based on statistical analysis of real-life systems and
capture variations which on real traces may not be visible. A detailed overview of
synthetic data and how to generate it for DS is given in [9]. A comparative study
– from more than 2 decades ago – between the two trace types has outlined no
significant differences in algorithm behavior [17].

There are many large trace sources from companies like Wikipedia [26], Google
[12] as well as traces from various parallel [8] and grid systems [5]. Despite their



Title Suppressed Due to Excessive Length 13

advantages, one downside is that a large portion of the simulation time is spent
reading the traces from disk as those traces can have hundreds of GB in size.

9 Conclusion

In this chapter we have emphasized the importance of simulators and simulation
models. Real-life systems require a huge amount of effort to configure the environ-
ment (application and platform), to run tests, and to analyze results.

In contrast, simulators allow users a fast and reliable method to evaluate applica-
tions ran on a specific platform. Over the years, the diversity of simulators has in-
creased leading to general purpose and specialized simulators on energy efficiency,
network modeling, network-aware scheduling, workload planning, resource alloca-
tion, service brokering, storage modeling (cf. Table 1).

Building cloud simulations and simulators consists in implementing bare metal
models, virtualization models, and cloud models.

The bare metal model is represented by hardware model level. Here has to be
taken in consideration CPU and network. Modeling CPU is a simpler than network
modeling which has to take into account latency, bandwidth, and TCP congestion.

At virtualization level, the hypervisor model can create and execute VMs. The
most well known algorithms implemented at this level are precopy, postcopy and
hybrid.

Cloud models should mimic the layered cloud architecture at the IaaS and PaaS
layers. Simulators need to be generic and extensible to allow extensions and cus-
tomized behavior. The IaaS model is composed of two main views: client view and
provider view. The PaaS level simulators provide functionality and models for sim-
ulating application execution. The application model is mapped on the underlying
models to enable users to take full advantage of the simulation environment.

Simulation data is represented either by real-life data or by synthetic data. Syn-
thetic data is based on statistical analysis of real-life systems. It can captures varia-
tions which may not be visible on real traces.

In conclusion, with the increase complexity of DSs we expect simulators to play
a crucial role in both research and development industry by enabling applications to
be tested in scenarios not covered by the limitations of real-life systems.

10 Chapter Control Questions and Problems

1. Explain why theoretical models may not be suitable for DS.
2. Explain why we need custom simulators for the cloud environment.
3. Enumerate at least three cloud simulators.
4. Enumerate and explain the drawbacks of current cloud simulators.



14 Marc Frincu, Bogdan Irimie, Teodora Selea, Adrian Spataru, Anca Vulpe

5. Define what the correctness study and the performance study are and how they
are done.

6. Enumerate the modeling layers of the cloud environment that need to be consid-
ered when designing a cloud simulator. Please give a short description for each
layer.

7. Install SimGrid Simulator, implement and run master/workers example. All the
necessary documentation can be found on the official website2

8. Implement and run ping-pong example.

Acknowledgment

The work of the first author has been partially funded by a grant of the Romanian
National Authority for Scientific Research and Innovation, CNCS/CCCDI - UEFIS-
CDI, project number PN-III-P3-3.6-H2020-2016-0005, within PNCDI III.

The work of the second author has been partially funded by the EU H2020 VI-
SEEM project under contract no. 675121.

The work of the third and forth authors has been partially funded by the EU
H2020 CloudLightning project under grant no. 643946.

References

1. A. Ahmed and A. S. Sabyasachi. Cloud computing simulators: A detailed survey and future
direction, Feb 2014.

2. Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, C&#x00e9;sar A. F. De Rose, and Ra-
jkumar Buyya. Cloudsim: A toolkit for modeling and simulation of cloud computing environ-
ments and evaluation of resource provisioning algorithms. Softw. Pract. Exper., 41(1):23–50,
January 2011.

3. Henri Casanova, Arnaud Giersch, Arnaud Legrand, Martin Quinson, and Frédéric Suter. Ver-
satile, scalable, and accurate simulation of distributed applications and platforms. Journal of
Parallel and Distributed Computing, 74(10):2899–2917, June 2014.

4. Simgrid Cloud. Virtualization / cloud abstractions in simgrid, 2016.
http://simgrid.gforge.inria.fr/contrib/clouds-sg-doc.php.

5. A. Iosup e al. Grid workload archive, 2016. http://gwa.ewi.tudelft.nl/.
6. Gossa Julien et al. Iaas simulation upon simgrid, 2015. http://schiaas.gforge.inria.fr/.
7. Quinson Martin et al. Simgrid 101: Getting started to the simgrid project, January 2015.

http://simgrid.gforge.inria.fr/tutorials/simgrid-101.pdf.
8. D. Feitelson. Parallel workload archive, 2016. http://www.cs.huji.ac.il/labs/parallel/workload/.
9. Dror G Feitelson. Workload modeling for computer systems performance evaluation. Cam-

bridge University Press, Cambridge, 2015.
10. Marc Eduard Frı̂ncu, Stéphane Genaud, and Julien Gossa. Client-side resource management

on the cloud: survey and future directions. IJCC, 4(3):234–257, 2015.
11. Mo Ghorbanzadeh, Ahmed Abdelhadi, and Charles Clancy. Delay-Based Backhaul Modeling,

pages 179–240. 2017.

2 http://simgrid.gforge.inria.fr/simgrid/latest/doc/group MSG examples.html



Title Suppressed Due to Excessive Length 15

12. Google. Google traces, 2016. https://github.com/google/cluster-data.
13. Harshit Gupta, Amir Vahid Dastjerdi, Soumya K. Ghosh, and Rajkumar Buyya. ifogsim: A

toolkit for modeling and simulation of resource management techniques in internet of things,
edge and fog computing environments. CoRR, abs/1606.02007, 2016.

14. T. Hirofuchi, A. Lebre, and L. Pouilloux. Simgrid vm: Virtual machine support for a simula-
tion framework of distributed systems. IEEE Transactions on Cloud Computing, PP(99):1–1,
2015.

15. S. Hunold, H. Casanova, and F. Suter. From simulation to experiment: A case study on multi-
processor task scheduling. In Parallel and Distributed Processing Workshops and Phd Forum
(IPDPSW), 2011 IEEE International Symposium on, pages 665–672, 2011.

16. ISI. The network simulator, November 2016. http://www.isi.edu/nsnam/ns/.
17. Virginia Lo, Jens Mache, and Kurt Windisch. A comparative study of real workload traces

and synthetic workload models for parallel job scheduling, pages 25–46. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1998.

18. Simgrid Models. Getting started with simgrid models, 2016.
http://simgrid.gforge.inria.fr/tutorials/surf-101.pdf.

19. NIST. Cloud computing, 2016. https://www.nist.gov/itl/cloud-computing.
20. Alberto Núñez, Jose L. Vázquez-Poletti, Agustin C. Caminero, Gabriel G. Castañé, Jesus

Carretero, and Ignacio M. Llorente. icancloud: A flexible and scalable cloud infrastructure
simulator. J. Grid Comput., 10(1):185–209, March 2012.

21. G. F. Riley. Large-scale network simulations with gtnets. In Simulation Conference, 2003.
Proceedings of the 2003 Winter, volume 1, pages 676–684 Vol.1, 2003.

22. Parnia Samimi, Youness Teimouri, and Muriati Mukhtar. A combinatorial double auction
resource allocation model in cloud computing. Information Sciences, 357:201 – 216, 2016.

23. S. A. R. Shah, A. H. Jaikar, and S. Y. Noh. A performance analysis of precopy, postcopy
and hybrid live vm migration algorithms in scientific cloud computing environment. In High
Performance Computing Simulation (HPCS), 2015 International Conference on, pages 229–
236, 2015.

24. Mohamed Abu Sharkh, Ali Kanso, Abdallah Shami, and Peter hln. Building a cloud on earth:
A study of cloud computing data center simulators. Computer Networks, 108:78 – 96, 2016.

25. Thiago Teixeira Sá, Rodrigo N. Calheiros, and Danielo G. Gomes. CloudReports: An Ex-
tensible Simulation Tool for Energy-Aware Cloud Computing Environments, pages 127–142.
Springer International Publishing, Cham, 2014.

26. Guido Urdaneta, Guillaume Pierre, and Maarten van Steen. Wikipedia workload analysis for
decentralized hosting. Elsevier Computer Networks, 53(11):1830–1845, July 2009.

27. B. Wickremasinghe, R. N. Calheiros, and R. Buyya. Cloudanalyst: A cloudsim-based visual
modeller for analysing cloud computing environments and applications. In 2010 24th IEEE
International Conference on Advanced Information Networking and Applications, pages 446–
452, April 2010.


