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Abstract With the advent of the Internet of Things, the ubiquity of mobile comput-
ing and the ever-increasing momentum of social networks, big data analytics and
cloud computing, numerous aspects of our daily life rely on inevitably complex
workloads, processed on distributed interconnected resources that are becoming
larger in scale and computational capacity. Complex applications may have differ-
ent degrees of parallelism and may impose several Quality of Service requirements,
such as time constraints and resilience against failures, as well as other objectives,
like energy efficiency. These features of the workloads, as well as the inherent char-
acteristics of the computing resources required to process them, present major chal-
lenges that require the employment of effective scheduling techniques. In this chap-
ter, a classification of complex workloads is proposed and an overview of the most
commonly used approaches for their scheduling in large-scale distributed systems
is given. We present novel strategies that have been proposed in the literature and
shed light on open challenges and future directions.

Key words: Gang scheduling; Workflow scheduling; Bag-of-Tasks scheduling;
Real-time applications; Fault tolerance; Energy efficiency.
1 Introduction

With the rapid pace of technological advances in mobile computing, big data ana-
Iytics and cloud computing, as well as with the ever-increasing popularity of social
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networks and the advent of recent concepts such as the Internet of Things, many ap-
plications we use in our daily life are inevitably becoming more and more complex.
Such applications cover a wide spectrum of areas, like healthcare, weather fore-
casting, environmental monitoring, social interaction, scientific research, industrial
manufacturing, telecommunications, multimedia streaming services, financial mar-
kets and e-commerce. The complex workloads generated by such applications, are
usually processed on interconnected computing resources that are geographically
distributed, encompass various heterogeneous components and are becoming larger
in scale and computational capacity day by day. Computer clusters, computational
grids and clouds are examples of such platforms.

Complex applications may have different degrees of parallelism and may im-
pose several Quality of Service (QoS) requirements, such as time constraints and
resilience against failures, as well as other objectives, like energy efficiency. These
features of the workloads, as well as the characteristics of the computing resources
required to process them, present major challenges that require the employment
of effective scheduling techniques. Due to their inherent complexity, the perfor-
mance of such algorithms is usually evaluated by simulation, rather than by analyti-
cal methods. Analytical modeling is difficult and often requires several simplifying
assumptions that may have an unpredictable impact on the results.

This chapter is organized as follows: Sect. 2 gives a definition of the scheduling
problem in large-scale distributed systems, as well as some of the most important
scheduling objectives. In Sect. 3, a classification of complex workloads is proposed,
according to their degree of parallelism. An overview of the most widely used
strategies for the scheduling of each class of complex applications in large-scale
distributed systems is given. Sect. 4 presents other challenges of complex workload
scheduling, covering topics such as timeliness, fault tolerance and energy efficiency.
Furthermore, novel strategies that have been proposed in the literature are presented
in Sect. 5. Finally, Sect. 6 concludes this chapter, shedding light on open challenges
and future research directions.

2 Scheduling Problem

In its general form, the scheduling problem in large-scale distributed systems con-
cerns the mapping of a set of application tasks V = {nj,ny,...,ny} to a set of pro-
cessors P = {p1,p2,...,pg}, in order to complete all tasks under the specified con-
straints (e.g. complete each task within its deadline) [2, 12]. In this general form,
the scheduling problem has been shown to be NP-complete [7].
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Fig. 1 Typical parameters that characterize a task of an application submitted for execution in a
large-scale distributed system.

2.1 Scheduling Objectives

Some of the parameters that characterize a task n; € V are shown in Fig. 1. These
parameters are:

e arrival time a(n;): it is the time at which the task arrives at the system.

e start time s(n;): it is the time at which the task starts its execution.

e finish fime f(n;): itis the time at which the task finishes its execution.

e deadline d(n;): it is the time before which the task should finish its execution.

Based on the above parameters, some of the most commonly used scheduling
objectives in large-scale distributed systems are:

(a) To minimize the average response time R of the tasks n; € V, where R is given
by:
— 1
na%
where R(n;) = f(n;) —a(n;) and N is the number of tasks in V.
(b) To minimize the makespan (i.e. total execution time) M of the tasks n; € V,
where M is defined as:
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(¢) To maximize the task guarantee ratio T GR of the tasks n; € V, where TGR is
given by:

1
TGR = N Z guar(n;) 3)
n;eVv

where
) — 4
guar(m) 0 otherwise @)
(d) To minimize the average tardiness T of the tasks n; € V, where T is defined
as:
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0 otherwise

3 Complex Workloads in Distributed Systems

The applications scheduled for execution in large-scale distributed systems, typi-
cally consist of numerous component tasks. At the one end of the spectrum, the
tasks require frequent communication with each other during their execution. At the
other end of the spectrum, the component tasks do not require any communication
and are completely independent. Between these two ends, is the case where commu-
nication is required between the component tasks of an application, but only before
or after their execution. Consequently, complex workloads in large-scale distributed
systems can be classified into the following categories:

e fine-grained parallel applications,
e coarse-grained parallel applications and
e embarrassingly parallel applications.

In the following paragraphs, each class of complex applications is presented in more
detail and their corresponding, most widely used scheduling heuristics are analyzed.

3.1 Fine-Grained Parallel Applications

An application features fine-grained parallelism when it consists of frequently com-
municating parallel tasks. A proven and effective way to schedule such applications
is gang scheduling. According to this approach, the parallel tasks of an application
form a gang and are scheduled and executed simultaneously on different processors.
Hence, all of the tasks of the application start execution at the same time. This way,
the risk of a task waiting to communicate with another task that is currently not run-
ning is avoided. The task with the largest execution time determines the execution
time of the gang. An example of a gang with N parallel tasks is shown in Fig. 2.
Consequently, gang scheduling facilitates the synchronization between the com-
ponent tasks of a fine-grained parallel application. Without this technique, the syn-
chronization of the component tasks would require more context switches and thus
additional overhead. On the other hand, in order to utilize gang scheduling, the num-
ber of available processors must be greater than or equal to the number of parallel
tasks of an application. Furthermore, due to the requirement that all of the tasks of a
gang must start execution at the same time, there may be times at which some of the
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Fig. 2 An example of a fine-grained parallel application. The frequently communicating tasks of
the application form a gang of N parallel tasks. The communication between the tasks is depicted
with arrows.

processors are idle, even with tasks waiting in their respective queues. Specifically,
a task at the head of the queue of an idle processor may be waiting for the other
tasks of its gang, which may not be able to start execution at the particular time
instant [32]. This situation is depicted in Fig. 3.

3.1.1 Gang Scheduling Policies

The two most widely used gang scheduling policies are the Adapted First Come
First Served (AFCFS) and Largest Gang First Served (LGFS) strategies.

Adapted First Come First Served (AFCFS)

This method is an adapted version of the First Come First Served (FCFS) scheduling
heuristic, according to which the gang that arrived first, has the highest priority for

execution. A gang starts execution when its tasks are at the head of their assigned
queues and the respective processors are idle. When there are not enough idle pro-
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Fig. 3 Example of gang scheduling in a system with three processors p1, p> and p3. The first gang
consists of the tasks n{ and né scheduled on processors p; and p;, respectively. The second gang
consists of the tasks n% n% and n% scheduled on processors p, p2 and p3, respectively. The third
gang consists of the tasks n? and n; scheduled on processors p; and p3, respectively. It can be
observed that the processor p3 remains idle during the execution of the tasks n} and né of the first
gang. This is due to the fact that the task n% at the head of its queue cannot start execution, because
according to the gang scheduling technique, it must start execution at the same time as the other
tasks of its gang, n% and n%, which are scheduled on the other processors that are currently busy.

cessors for a gang with a large number of parallel tasks waiting at the front of their
assigned queues, a smaller gang with tasks waiting behind those of the larger gang
can start execution. This technique is also referred to as backfilling [10].

The major drawback of this scheduling policy is that it tends to favor smaller
gangs, which leads to greater response times for larger gangs. In order to over-
come this issue, various techniques have been proposed in the literature, such as
the employment of a bypass count parameter [17] and the utilization of task migra-
tions [22]. The first method, counts for each gang the number of gangs that bypassed
it, due to an insufficient number of idle processors. When the bypass count of a gang
reaches a specified threshold, it gets the highest priority for execution. According to
the second method, the tasks of a gang are candidate for migration only if at least
one of them is at the head of its assigned queue and the respective processor is idle.
The tasks that are migrated, are placed at the head of their newly assigned queues.
In order to avoid the starvation of the other tasks, there is a limit on the number of
migrated tasks a queue can accept.
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Largest Gang First Served (LGFS)

According to this scheduling strategy, the tasks in the processor queues are sorted
in descending order of gang size (i.e. number of tasks) of their respective gang.
Thus, tasks that belong to larger gangs have higher priority than tasks that belong
to smaller gangs. Whenever a processor becomes idle, the scheduler searches the
queues starting from the head of each queue and the first gang with tasks that can
start execution occupies the processors [11]. Clearly, this strategy tends to favor
applications with a high degree of parallelism (i.e. large gangs), at the expense of
smaller gangs. However, this is sometimes desirable and may lead to a better system
performance, compared to the AFCFS policy.

3.2 Coarse-Grained Parallel Applications

In case an application exhibits coarse-grained parallelism, its component tasks do
not require any communication with each other during processing, but only before
or after their execution. That is, the component tasks have precedence constraints
among them, in such a way that the output data of a task are used as input by other
tasks. A component task can only start execution when its predecessor tasks have
completed. A task without any parent tasks is called an entry task, whereas a task
without any child tasks is called an exit task.

Such an application is often called a workflow application and can be represented
by a Directed Acyclic Graph (DAG) or task graph, G = (V,E), where V and E are
the sets of the nodes and the edges of the graph, respectively [27, 29, 30]. Each node
represents a component task, whereas a directed edge between two tasks represents
the data that must be transmitted from the first task to the other. Each node has a
weight that represents the computational cost of its corresponding task. Each edge
between two tasks has a weight that denotes the communication cost that is incurred
when transferring data from the first task to the other.

The level of a task in the graph is equal to the length of the longest path from the
particular task to an exit task in the graph. The length of a path is the sum of the
computational and communication costs of all of the nodes and edges, respectively,
along the path. The critical path of the graph is the longest path from an entry task
to an exit task in the graph. An example of a workflow application is illustrated in
Fig. 4.

3.2.1 Workflow Scheduling Approaches

Workflow applications require a scheduling strategy that should take into account
the precedence constraints among their component tasks. The workflow scheduling
heuristics are classified into the following general categories:

o [ist scheduling algorithms,
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Fig. 4 An example of a coarse-grained parallel application (workflow application), represented as
a Directed Acyclic Graph (DAG). The number in each node denotes the computational cost of the
represented task. The number on each edge denotes the communication cost between the two tasks
that it connects. The critical path of the DAG is depicted with thick arrows.

e clustering algorithms,
e task duplication algorithms and
e guided random search algorithms.

These techniques are analyzed in the following paragraphs.

List Scheduling Algorithms

A list scheduling algorithm consists of two phases: (a) a task selection phase and
(b) a processor selection phase. In the first phase, the tasks are prioritized based on
specific criteria and are arranged in a list according to their priority. The task with
the highest priority is selected first for scheduling. During the second phase, the
selected task is scheduled to the processor that minimizes a specific cost function,
such as the estimated start time of the task [34]. List scheduling algorithms are the
most commonly used among the workflow scheduling heuristics, because they are
generally simpler, more practical, easier to implement and they usually outperform
other techniques, incurring less scheduling overhead [37].
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One of the simplest list scheduling policies is the Highest Level First (HLF) [1].
According to this method, the task prioritization phase is based on the level of each
task. In the processor selection phase, the selected task is scheduled to the proces-
sor that can provide it with the earliest start time. An improved version of the HLF
strategy is the Insertion Scheduling Heuristic (ISH) [13] and it is based on the ob-
servation that idle time slots may form in the schedule of a processor (schedule
gaps), due to the data dependencies among the tasks. The task selection phase of
this technique is based on HLF. However, during the processor selection phase, a
task may be inserted into a schedule gap, as long as it does not delay the execution
of the succeeding task in the schedule and provided that it cannot start earlier on any
other processor. An alternative version of ISH, adapted for heterogeneous systems,
is the Heterogeneous Earliest Finish Time (HEFT) policy [37]. According to this
approach, for the calculation of the level of each task, the average computational
and communication costs of the tasks and edges, respectively, are used.

Clustering Algorithms

The main idea of clustering algorithms is the minimization of the communication
cost between the tasks of a DAG, by grouping heavily communicating tasks into
the same cluster and assigning all of the tasks in the cluster to the same processor.
A clustering algorithm is an iterative process. At first, each task is an independent
cluster. At each iteration, previous clusters are refined by merging some of them,
according to specific criteria. At the end of the process, a cluster merging step is
needed, so that the number of clusters is equal to the number of processors. Subse-
quently, a cluster mapping step is required, in order to map each cluster to a proces-
sor. Finally, a task ordering step is performed, in order to determine the execution
order of tasks on each processor [9].

One of the most popular clustering techniques is the Dominant Sequence Clus-
tering (DSC) algorithm [40]. This method is based on the observation that the
makespan of a DAG is determined by the longest path in the scheduled task graph
and not by its critical path, which is calculated before the scheduling of the tasks of
the DAG. The longest path in the scheduled DAG is called the dominant sequence
(DS). According to the DSC algorithm, the tasks in a DAG are clustered in such a
way, so that the dominant sequence of the graph is minimized.

Task Duplication Algorithms

In this category of workflow scheduling heuristics, the main concept is to utilize idle
resource time by duplicating predecessor tasks in a DAG, so that the makespan of
the particular DAG is minimized. The various duplication-based algorithms differ-
entiate with each other, according to the criteria used for the selection of the tasks
for duplication. One of the major drawbacks of task duplication algorithms, is that
they usually have higher complexity than the other DAG scheduling techniques.
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One of the most well-known duplication algorithms is the Duplication Schedul-
ing Heuristic (DSH) [13]. According to this approach, the tasks in a DAG are pri-
oritized according to their level. At each scheduling step, the task with the highest
level is selected and is allocated to the processor that can provide it with the ear-
liest start time. In order to calculate the earliest possible start time of the selected
task on each processor, first its start time is calculated without duplication of any
predecessor tasks. Subsequently, the duplication time slot is determined, which is
the time period between the finish time of the last scheduled task on the particular
processor and the start time of the currently examined task. The algorithm then tries
to duplicate the predecessors of the task into the duplication time slot in a recursive
manner, starting from the parent task from which the data arrives the latest, until
either the slot cannot accommodate other predecessor tasks or the start time of the
examined task is not improved.

Guided Random Search Algorithms

A guided random search algorithm is an iterative process of finding the best sched-
ule for a DAG, based on specific criteria. At each step, the previously generated
schedule is improved, by utilizing random parameters for the generation of the
new schedule. This iterative process terminates according to a predefined condition.
These algorithms, even though they generally generate schedules of good quality,
however, they incur a much higher scheduling overhead than the other workflow
scheduling methods. The most commonly used algorithms of this category are ge-
netic algorithms, according to which each new schedule is generated by applying
evolutionary techniques from nature, known as fitness functions [8].

Simulated Annealing (SA) is another example of a guided random search meta-
heuristic. This technique emulates the physical process of annealing in metallurgy,
which involves the heating and the controlled, slow cooling of metals, in order to
form a crystallized structure without any defects [20]. In SA, a temperature variable
is used in order to simulate this heating process. Initially, it is set at a high value
and as the algorithm runs, it is allowed to slowly cool down. While the value of the
temperature variable is high, the algorithm is allowed to accept solutions that are
worse than the current one, with higher frequency. As the value of the temperature
variable is decreased, so is the chance of accepting worse solutions. Therefore, the
algorithm gradually focuses on an area of the search space in which hopefully a
near-optimal solution can be found.

3.3 Embarrassingly Parallel Applications

An application is regarded as embarrassingly parallel when its component tasks
are independent, do not communicate with each other and can be executed in any
order. Due to these characteristics, such applications are also called Bag-of-Tasks
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Fig. 5 An embarrassingly parallel application, consisting of N independent parallel tasks. Such
applications are commonly referred to as Bag-of-Tasks (BoT) applications.

(BoT) applications. Due to the independence between their tasks, BoT applications
are well suited for execution on widely distributed resources, such as computational
grids, where communication can become a bottleneck for more tightly-coupled par-
allel applications, such as gangs and DAGs [39]. An example of a BoT application
is depicted in Fig. 5.

3.3.1 Scheduling BoT Applications

The most widely used strategies for scheduling BoT applications are: (a) Min-
Min, (b) Max-Min and (c) Sufferage. All of these policies focus on minimizing the
makespan of the scheduled BoT application.

Min-Min

This heuristic is an iterative process, consisting of two steps. In the first step, the
minimum completion time (MCT) of each unassigned task is calculated, over all of
the processors in the system. In the second step, the task with the minimum MCT
is assigned to the corresponding processor. At each iteration of the algorithm, the
MCT of each unassigned task is determined taking into account the current load of
the processors, as resulted by the scheduling decision of the previous iteration [39].

Max-Min

This strategy differs from the Min-Min policy, in that the task with the maximum
(instead of the minimum) MCT is assigned to the corresponding processor in the
second step of the scheduling process. Consequently, in cases where the application
consists of a large number of tasks with small execution times and a few tasks with
large execution times, the Max-Min heuristic is likely to give a smaller makespan
than the Min-Min algorithm, since it schedules the tasks with larger execution times
at earlier iterations [35].
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Sufferage

This algorithm is a two-step iterative process, like the Min-Min and Max-Min
heuristics. However, in this case, in addition to the MCT of each task, its second
MCT is also calculated during the first step of the process. Subsequently, the suffer-
age value of each task is determined, by subtracting its MCT from its second MCT.
In the second step, the task with the largest sufferage value is assigned to the pro-
cessor that can provide it with the MCT. That is, this heuristic is based on the idea
that the highest priority for scheduling should be given to the task that would suffer
the most (in terms of completion time) if it is not assigned to the processor that can
provide it with the MCT [16].

4 Other Challenges

In addition to the challenges imposed by their degree of parallelism, complex appli-
cations in large-scale distributed systems may also have various QoS requirements,
such as timeliness and fault tolerance, as well as other objectives, like energy ef-
ficiency. These requirements are usually specified in a Service Level Agreement
(SLA), which is a contract between the user that submits the application for exe-
cution and the provider of the infrastructure that the application is executed on. In
the following paragraphs, representative examples for each case are given.

4.1 Scheduling Complex Applications with Time Constraints

The most common QoS requirement that complex applications may impose, is to
finish execution within a strict time constraint. Such applications are regarded as
real-time, since they have a deadline that must be met [2]. Two of the most widely
used policies for the scheduling of real-time complex applications are the Earliest
Deadline First (EDF) and the Least Laxity First (LLF) algorithms [15, 19]. Accord-
ing to the EDF strategy, the component task with the highest priority for execution
is the one with the earliest deadline. On the other hand, according to the LLF policy,
the task with the highest priority is the one with the minimum laxity. The laxity of a
task at a specific time instant, is defined as the difference between its deadline and
its finish time. That is, it is the maximum amount of time that the particular task can
delay its execution and still not miss its deadline.

A heuristic for the scheduling of real-time workflow applications in distributed
systems, is the Least Space-Time First (LSTF) policy [5], which takes into account
both the precedence and the time constraints among the tasks. Specifically, accord-
ing to this method, the task with the highest priority for scheduling is the one with
the minimum value of the space-time parameter. The space-time parameter of a task
at a specific time instant, is defined as the difference between the deadline of the
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DAG and the level of the particular task. Even though this algorithm outperforms
other scheduling policies, such as EDF, LLF and HLF described earlier, in the sense
that it minimizes the maximum tardiness of the tasks, however, it exhibits poorer
performance at guaranteeing deadlines.

4.1.1 Approximate Computations

Based on the observation that it is often more desirable for a real-time application to
produce an approximate result by its deadline, than to produce a precise result late,
the technique of approximate computations has been proposed [14]. According to
this method, a real-time application is allowed to return intermediate, approximate
results of poorer, but still acceptable quality, when the deadline of the application
cannot be met. Approximate computations can be utilized especially in the case of
applications with monotone component tasks, where the quality of a task’s results
is improved as more time is spent to produce them (e.g. statistical estimation and
video processing tasks). Each monotone task typically consists of a mandatory part,
followed by an optional part. In order for a task to return an acceptable result, its
mandatory part must be completed. The optional part refines the result produced
by the mandatory part. Consequently, the approximate computations technique pro-
vides scheduling flexibility, by trading off precision for timeliness, since it allows
the scheduler to terminate a task that has completed its mandatory part at any time,
depending on the workload conditions of the system [25, 26].

4.2 Fault-Tolerant Scheduling of Complex Workloads

Fault tolerant scheduling in large-scale distributed systems, such as clouds, is
usually achieved through application-directed checkpointing, which in contrast to
system-directed checkpointing, is more practical, easier to implement and system-
independent [21]. According to this approach, each application is responsible for
checkpointing its own progress periodically, at regular intervals during its execu-
tion. In complex applications in particular, each component task periodically stores
its state and intermediate data on persistent storage, creating a local checkpoint. The
set of the local checkpoints (one from each task) that form a consistent application
state, constitute a consistent global checkpoint.

When a failure occurs, the application is rolled back and resumes execution from
its last consistent global checkpoint. Checkpointing is a reactive failure management
technique, where recovery measures are taken after the occurrence of a failure. As
opposed to proactive failure management approaches, where prevention measures
are taken before the occurrence of a failure (e.g. task migrations), reactive manage-
ment is simpler to implement, since it does not require any complex failure predic-
tion methods.
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4.3 Energy Efficient Scheduling of Complex Applications

There is a growing focus on green computing from both the academia and the indus-
try, in an attempt to minimize the carbon footprint of data centers and increase the
energy efficiency of applications. Typically, in most computing systems the proces-
sor consumes the greatest amount of energy compared to other components [38]. In
embedded systems, as well as in large-scale virtualized platforms such as the cloud,
a technique that is frequently used in order to meet the energy constraints is the
Dynamic Voltage and Frequency Scaling (DVFS) method. This technique allows the
dynamic adjustment of the supply voltage and operating frequency (i.e. speed) of
a processor, based on the workload conditions, in an attempt to reduce the energy
consumption of the processor [12, 36].

A heuristic frequently used with DVFS, is the slack reclamation technique [4].
This method is based on the fact that the actual execution time of tasks is sometimes
much shorter than their estimated worst case execution time. The difference between
the actual and the worst case execution time of a task is called slack time. At runtime,
the scheduler tries to reclaim the slack time due to the early completion of a task, by
selecting an unprocessed task to be executed at a slower processor speed via DVFS
and thus save energy.

An energy-efficient scheduling strategy for real-time BoT applications in the
cloud utilizing DVFS, is the Cloud-Aware Energy-Efficient Scheduling (CAEES)
algorithm [3]. At each scheduling step, this method attempts to reduce the total en-
ergy consumption of the hosts, by selecting the most suitable virtual machine (VM)
for the execution of each task, in an energy-wise manner. Specifically, the algorithm
tries to schedule a task by examining specific criteria, starting from the best solution
and gradually going to the worst solution: (a) the task is scheduled to a VM in use,
without requiring an increase in its frequency, (b) the task is scheduled to a VM in
use, but its operating frequency needs to be increased, (c) the task is scheduled to an
idle VM, but there is at least one other VM on the same host that is not idle (i.e. the
host is not idle) and (d) the task is scheduled to an idle VM on an idle host.

5 Recent Novel Ideas and Research Trends

In an attempt to provide even more effective scheduling solutions for complex work-
loads in large-scale distributed systems, recent novel approaches have been pro-
posed in the literature. A prominent research trend is the utilization of approxi-
mate computations in combination with other techniques, in order to achieve better
scheduling performance, in terms of timeliness, resilience against failures and en-
ergy conservation. For example, approximate computations can be combined with:

e bin packing techniques, in order to enhance timeliness,
e checkpointing, in an attempt to improve fault tolerance and
e DVFS, for better energy efficiency.
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5.1 Approximate Computations with Bin Packing

The traditional bin packing problem concerns the packing of a set of objects into a
set of bins, using as few bins as possible [6]. The most commonly used bin packing
techniques are: (a) First Fit (FF), where the object is placed into the first bin where
it fits, (b) Best Fit (BF), where the object is placed into the bin where it fits and
leaves the minimum unused space possible and (c) Worst Fit (WF), where the object
is placed into the bin where it fits and leaves the maximum unused space possible.

In an attempt to improve the timeliness of real-time workflow applications in a
heterogeneous distributed system, a novel list scheduling heuristic has been pro-
posed, which utilizes schedule gaps with a technique that combines approximate
computations with the FF, BF and WF bin packing policies [28, 31]. Another char-
acteristic of the proposed approach, is that it takes into account the effects of error
propagation among the tasks of an application in case of partially completed tasks.
The task prioritization is based on EDF. Once a task is selected by the scheduler, it
is allocated to the processor that can provide it with the earliest estimated start time.
In order to calculate the estimated start time of the task on the particular processor,
schedule gaps are exploited with a technique that allows only a fraction of the task
to be inserted into an idle time slot. The fraction of the task to be inserted into a
schedule gap must be at least equal to the mandatory part of the task. Moreover, its
potential output error must not exceed the input error limit of its child tasks.

The placement of the partial task into a schedule gap is performed using a modi-
fied version of either the FF, BF or WF bin packing policy:

e First Fit with Approximate Computations (FF_AC): the task is placed into the
first schedule gap where at least its minimum possible computational cost fits.

e Best Fit with Approximate Computations (BF_AC): the task is placed into the
schedule gap where its maximum possible computational cost fits, leaving the
minimum unused time possible.

o Worst Fit with Approximate Computations (WF_AC): the task is placed into the
schedule gap where its minimum possible computational cost fits, leaving the
maximum unused time possible.

In contrast to this approach, the other list scheduling heuristics presented earlier, [ISH
and HEFT, essentially use FF in order to utilize idle time slots. More importantly,
with the incorporation of approximate computations, this approach is more flexible,
allowing only a fraction of a task to be inserted into a schedule gap when the task
does not completely fit into it. An example of scheduling tasks with the proposed
heuristics (EDF_FF_AC, EDF_BF_AC and EDF_WF_AC), compared to the baseline
EDF policy, is illustrated in Fig. 6. The parameters of the tasks used in the example
are shown in Table 1.
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A A A A
time time time time
10 10 — 10 — 10 —
9 —| 9 — 9 — 9 —
ny
8 — 8 — 8 — 8 —
7 7 7 7
6 — n3 6 — n3 6 — n3 6 — n3
5 5 5 5
4 — 4 — 4 — ny 4
ny
3 — 3 3 3
n; n; n; n;
2 — 2 2 2
ny
T — 1 1 — 1
ny ny ny ny
0 — 0 0 — 0 —
EDF EDF_FF_AC EDF_BF_AC EDF_WF_AC
(a) (b) (c) (d)

Fig. 6 An example of scheduling tasks with the strategies described in Subsection 5.1. A task n4
is scheduled according to one of the policies: (a) EDF (baseline algorithm), (b) EDF_FF_AC, (c)
EDF_BF_AC and (d) EDF_WF_AC. The parameters of the tasks used in the example are shown in
Table 1.

Table 1 The parameters of the tasks used in the example of Fig. 6. For each task, d is its deadline,
t4arq 1S the time at which its required input data will be available, c is its computational cost and
Cmin 18 its minimum computational cost when approximate computations are utilized.

Task d tdata c Cmin
n 2 0 1 1
n 4 2 1 1
ns 9 5 2 1
ng 10 1 3 1

5.2 Approximate Computations with Checkpointing

In an attempt to improve resilience against transient software failures in a SaaS
cloud, where real-time fine-grained parallel applications are scheduled and exe-
cuted, the approximate computations technique has been combined with application-
directed checkpointing [23, 24, 33]. Specifically, gang scheduling is employed,
where the prioritization of the component tasks is according to the EDF policy.
In addition to application-directed checkpointing, fault tolerance is enhanced by the
use of approximate computations in either a restricted manner or a more holistic
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approach. In the first case, an application may provide approximate results when
it has completed its parallel mandatory part and (a) its deadline is reached, (b) a
failure occurred and its last generated checkpoint stored results corresponding to
computational work greater than or equal to its mandatory part or (c) another noti-
fied application must start execution immediately (i.e. there is time to execute only
the mandatory part of the other application before its deadline). According to the
second approach, all applications are scheduled to complete only their mandatory
part. That is, in this case all applications give approximate results.

5.3 Approximate Computations with DVFS

In order to enhance energy efficiency, a heuristic that combines approximate com-
putations with DVFS has been proposed, for the scheduling of periodic real-time
tasks [18]. According to this approach, the tasks are scheduled according to the
Mandatory-First Earliest Deadline (MFED) policy, while the supply voltage and
processor frequency are scaled according to the Cycle-Conserving Real-Time DVES
(CC-RT-DVFS) technique. MFED is a policy according to which the mandatory
parts of the tasks have always higher priority than the optional parts. The mandatory
part with the earliest deadline has the highest priority for execution. CC-RT-DVFS
is essentially a dynamic slack reclamation technique, which utilizes the slack time
that occurs due to the early completion of a mandatory part, for the scheduling of
the optional part of the task at a lower processor speed, utilizing DVFS. Thus, in
this strategy there is a trade-off not only between result precision and timeliness,
but also between result precision and energy savings.

6 Conclusions

In this chapter, a classification of complex workloads was proposed and an overview
of the most commonly used heuristics for their scheduling in large-scale distributed
systems was given. Other challenges of complex applications were covered, such
as timeliness, resilience against failures and energy efficiency. Furthermore, recent
novel ideas and research trends were presented.

Scheduling complex workloads in large-scale distributed systems remains an ac-
tive research area, with many open challenges. As the workloads tend to get more
complex and computationally demanding, more effective scheduling heuristics must
be employed. In addition to the timeliness, fault tolerance and energy efficiency ob-
jectives, security and data awareness are drawing an ever-increasing interest from
both the industry and the research community. Hence, efforts towards this direction
are expected to be intensified in the near future.
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