Design Patterns and Algorithmic Skeletons:
A Brief Concordance

Adriana E. Chis and Horacio Gonzalez—Vélez

Abstract Having been designed as abstractions of common themes in object-
oriented programming, patterns have been incorporated into parallel programming
to allow an application programmer the freedom to generate parallel codes by pa-
rameterising a framework and adding the sequential parts. On the one hand, parallel
programming patterns and their derived languages have maintained, arguably, the
best adoption rate; however, they have become conglomerates of generic attributes
for specific purposes, oriented towards code generation rather than the abstraction
of structural attributes. On the other hand, algorithmic skeletons systematically ab-
stract commonly-used structures of parallel computation, communication, and inter-
action. Although there are significant examples of relevant applications—mostly in
academia—where they have been successfully deployed in an elegant manner, algo-
rithmic skeletons have not been widely adopted as patterns have. However, the ICT
industry expects graduates to be able to easily adapt to its best practices. Arguably,
this entails the use of pattern-based programming, as it has been the case in sequen-
tial programming where the use of design patterns is widely considered the norm,
as demonstrated by a myriad of citations to the seminal work of Gamma et al. [6]
widely known as the Gang-of-Four. We contend that an algorithmic skeleton can be
treated as a structural design pattern where the degree of parallelism and computa-
tional infrastructure are only defined at runtime. The purpose of this chapter is to
systematically explain how design patterns can be efficiently mapped into algorith-
mic skeletons and consequently benefit application programmers. We illustrate our
approach using a visitor design pattern and a task farm algorithmic skeleton.

A. E. Chis - H. Gonzélez—Vélez
Cloud Competency Centre, National College of Ireland, Dublin 1, Ireland e-mail: {adriana.
chis, horacio}@ncirl.ie

2 Adriana E. Chis and Horacio Gonzéilez—Vélez

1 Introduction

Parallel programming aims to capitalise on concurrency, the execution of different
sections of a given program at the same time, in order to improve the overall per-
formance of the program, and, eventually, that of the whole system. Despite major
breakthroughs, parallel programming is still a highly demanding activity widely ac-
knowledged to be more difficult than its sequential counterpart, and one for which
the use of efficient programming models and structures has long been sought. These
programming models must necessarily be performance-oriented, and are expected
to be defined in a scalable structured fashion to provide guidance on the execution
of their jobs and assist in the deployment of heterogeneous resources and policies.

Furthermore, it is widely acknowledged that one of the major challenges of the
multi/many-core era is the efficient support of parallel programming models that
can predict and improve performance for diverse heterogenous architectures [9].
Furthermore, the “Berkeley View” work established the importance of not only pro-
ducing realistic benchmarks for parallel programming models based on patterns
of computation and communication, but also developing programming paradigms
which efficiently deploy scalable task parallelism [2]. Such decoupling has allowed
them to be efficiently deployed on different dedicated and non-dedicated architec-
tures including symmetric multiprocessing, massively parallel processing, clusters,
constellations, and clouds.

Design patterns have been conceived as abstractions of common themes in
object-oriented programming [5, 6]. Parallel patterns aim to further expand this
concept by decoupling the detail or implementation from the structure of a parallel
program in order to transfer any performance improvements in the system infras-
tructure while preserving the final result.

Algorithmic skeletons abstract commonly-used patterns of parallel computation,
communication and interaction [3]. Skeletons provide a clear and consistent be-
haviour across platforms, with the underlying structure depending on the particular
implementation.

While diverse authors have established the importance of patterns and skele-
tons in parallel programming from a design point of view [8, 10], a significant
programmer-oriented approach should arguably benefit applicative environments
and development projects.

We propose an initial direct mapping of design patterns and skeletons in or-
der to have “marry” the well-known, accepted design pattern approach with the
programmer-oriented functional algorithmic skeleton paradigm.

This chapter is structured as follows. Firstly, section 2 provides a brief intro-
duction to design patterns. Secondly, section 3 describes the algorithmic skeleton
paradigm. Thirdly, section 4 describes our methodological mapping of a simple de-
sign pattern to an algorithmic skeleton. Finally, section 5 presents our conclusions.

Design Patterns and Algorithmic Skeletons: A Brief Concordance 3

2 Design Patterns

Computers have been traditionally programmed with a sequential frame of mind, but
parallel solutions require a different way of approaching and dissecting a problem.
They require a holistic analysis and understanding of the system architecture, the
programming paradigm, and the problem constraints. Parallel computing requires
calculations to be synchronised, staged, and/or communicated over a number of dif-
ferent phases. Message-passing, threads, load-balancing, and semaphores are mat-
ters restricted to the expert software developers and, arguably, lack some high-level
design features required for large-scale software development endeavours.

Having defined a pattern as a core solution to a problem that recurrently occurs
in a given context, Alexander et al. introduced a pattern language to describe tens
of patterns applied in civil engineering [1]. Subsequently, design patterns have doc-
umented solutions to recurrent software design problems. Gamma et al. present 23
design patterns [6].

Behavioural: Algorithms,
Relationships, Responsibilities

Structural: Data Structures

Creational: Objects

suJa11ed usdisag

Fig. 1 Traditional Classification of Design Patterns: Creational, Structural and Behavioural.

The authors classify the design patterns based on their purpose into three main
categories, namely creational patterns, structural patterns and behavioural patterns
as illustrated in Figure 1.

Creational patterns Used to build objects such that they can be decoupled from
the implementing system.

Structural patterns Used to form large data structures from many disparate ob-
jects.

Behavioural patterns Used to manage algorithms, relationships, and responsibili-
ties between objects.

Furthermore, Gamma at el. provide another classification of the design patterns
based on the patterns’ scope in object patterns and class patterns. As the name sug-
gests the former category of patterns specify relationships between objects, whereas
the latter category of patterns encodes relationships between classes and subclasses.

4 Adriana E. Chis and Horacio Gonzéilez—Vélez

A complete description of these design patterns can be found in the seminal book
by Gamma et al. [6]. The authors document each pattern using a template. The core
elements of describing a pattern are: the pattern name; the problem, which presents
details about a problem in a given context; the solution in form of a generic design
solution which incorporates the relationships and interactions between objects and
classes; and the consequences of using a given pattern. A number of core design
patterns are presented in Table 1.

Table 1 Examples of Design Patterns (Creational, Structural, and Behavioural) [6]

Category Pattern

Creational ~ Abstract Factory, Builder, Factory Method, Prototype, Singleton
Structural ~ Adapter, Bridge, Composite, Decorator, Facade, Flyweight, Proxy

Behavioural Chain of Responsibility, Command, Interpreter, Iterator, Mediator
Memento, Observer, State, Strategy, Template Method, Visitor

3 Algorithmic Skeletons

Cole pioneered the field with the definition of skeletons as “specialised higher-order
functions from which one must be selected as the outermost purpose in the pro-
gram”, and the introduction of four initial skeletons: divide and conquer, iterative
combination, cluster, and task queue [3]. His work described a software engineer-
ing approach to high-level parallel programming using a skeletal (virtual) machine
rather than the deployment of a tool or language on a certain architecture.

In essence, algorithmic skeletons systematically abstract commonly-used struc-
tures of parallel computation, communication, and interaction. Skeletal parallel pro-
grams are typically expressed by interweaving parameterised skeletons using de-
scending composition and control inheritance throughout the program structure,
analogously to the way in which sequential structured programs are constructed [4].
This high-level parallel programming technique, known as structured parallelism,
enables the composition of skeletons for the development of programs where the
control is inherited through the structure, and the programmer adheres to top-down
design and construction. Thus, it provides a clear and consistent behaviour across
platforms, while their structure depends on the particular implementation.

Since skeletons enable programmers to code algorithms without specifying the
machine-dependent computation and coordination primitives, they have been posi-
tioned as coordination enablers in parallel programs. A complete survey on algo-
rithmic skeletons and their frameworks can be found in [7].

Design Patterns and Algorithmic Skeletons: A Brief Concordance 5

Despite its elegance and potential, it is important to state that structured paral-
lelism still lacks the necessary critical mass to become a mainstream parallel pro-
gramming technique. Its principal shortcomings are its application space, since it
can only address well-defined algorithmic solutions, and the lack of a specification
to define and exchange skeletons between different implementations.

Skeletons can be broadly categorised into three types based on their functionality
as shown in table 2.

Data-parallel skeletons Work typically on bulk data structures. Their behaviour
establishes functional correspondences between data, and their structure regu-
lates resource layout at fine-grain parallelism, e.g. MPI collectives.

Task-parallel skeletons Operate on tasks. Their behaviour is determined by the
interaction between tasks, and their coarse-grain structure establishes scheduling
constraints among processes, e.g., task farm and pipeline.

Resolution skeletons Delineate an algorithmic method to undertake a given fam-
ily of problems. Their behaviour reflects the nature of the solution to a family
of problems, and their structure may encompass different computation, commu-
nication, and control primitives, e.g, the divide-and-conquer and dynamic pro-
gramming skeletons.

From a coordination point of view, data-parallel skeletons are typically in-
put/output intensive as they operate on memory, and even disk, stored data struc-
tures, while resolution are computational-intensive as they deploy complex algo-
rithms with demanding computational requirements. Task parallel can be construed
as task schedulers with intimate knowledge of the program structure.

Table 2 A taxonomy for the algorithmic skeleton constructs based on their functionality

Skeleton Scope Main Coordination Examples
Characteristic

Data-Parallel Data structures 1/0 intensive map, reduce
Task-Parallel Tasks Scheduling task farm, pipeline
Resolution ~ Family of problems Computational- divide-and-conquer, branch-and-bound

intensive

6 Adriana E. Chis and Horacio Gonzéilez—Vélez

3.1 A Classification for Algorithmic Skeletons

This section elaborates on the functionality associated with the specific algorithmic
skeletons listed in Table 2.

e Data-parallel (see Fig. 2)

TN
Map g
S~
™.
a_l,..a_n
~ S
i L ‘
AN TN TN
a_l[oJa_2 a_3[cla_a a_n-1[o] a_n
~_ ~ " NS
Reduce v

{ 1
o Ny e
N

N ~
alffa 2 Laee aiffaitl ees a_n-1ifa_n

S ~ S
S~ —

Fig. 2 Two Data Parallel Skeletons: Map and Reduce.

— Map specifies that a function or a sub-skeleton can be applied simultaneously
to all the elements of a list to achieve parallelism. The data parallelism occurs
because a single data element can be split into multiple data, then the sub-
skeleton is executed on each data element, and finally the results are united
again into a single result. The map skeleton can be conceived as single in-
struction, multiple data parallelism.

— Reduce, also known as scan, is employed to compute prefix operations in a
list by traversing the list from left to right and then applying a function to
each pair of elements, typically summation. Note that as opposed to map, it
maintains aggregated partial results.

o Task-parallel (see Fig. 3)

— Task Farm or simply farm embeds the ability to schedule independent tasks in
a divisible workload across multiple computing nodes.

Design Patterns and Algorithmic Skeletons: A Brief Concordance 7

Task Farm

; Worker 1 }
‘ ‘ Worker 2 ‘

Farmer L
. "ee

‘ Worker n

Pipeline

eeStage 2
aee

esStage n

Fig. 3 Two Task Paralel Skeletons: Task Farm and Pipeline.

— Pipe enables staged computations, where parallelism can be achieved by com-
puting different stages simultaneously on different inputs. The number of
stages provided by pipe can be variable or fixed.

e Resolution (see Fig. 4)

— Divide & Conquer (d&c) calls are recursively applied until a condition is met
within a optimisation search space. Its semantics are as follows. When an
input arrives, a condition component is invoked on the input. Depending on
the result two things can happen. Either the parameter is passed on to the
sub-skeleton, or the input is split with the split component into a list of data.
Then, for each list element the same process is applied recursively. When no
further recursions are performed, the results obtained at each level are merged.
Eventually, the merged results yield to one result which corresponds to the
final result of the d&c skeleton.

— Branch & Bound (b&Db) divides recursively the search space (branch) and then
determines the elements in the resulting sub-spaces by mapping an objective
function (bound). The merged results also produce one result which corre-
sponds to the final result of the b&b skeleton.

8 Adriana E. Chis and Horacio Gonzéilez—Vélez

Divide & Conquer

Divide > ERL I

division
minimal_list

. Sublist_i

minimal_list

Lst ¢ -
N Sublist_i+1 minimal_list

Merge < Merge &

Branch & Bound

Search branch branch
space *sbound +ebound

branch branch branch Result
*sbound *sbound *ehound

Fig. 4 Two Resolution Skeletons: Divide & Conquer and Branch & Bound.

4 Mapping Patterns and Skeletons

In this section we show how the Visitor pattern, a behavioural design pattern, can
be mapped to the Task Farm skeleton by documenting the latter pattern using the
design pattern template and identifying the commonalities between the two.

Design patterns comprise intent, motivation, participants, and collaborations, and
consequences. Given that structural design patterns have been conceived to create
added functionality via object augmentation, they can be “made” parallel. That is to
say, a standard compound structural pattern can have parallel characteristics which
can be instantiated dynamically. On the other hand, algorithmic skeletons operate
on the notion of changing underlying computational resources and therefore detach
the structure from the behaviour of the program.

We contend that an algorithmic skeleton can be treated as a structural design
pattern where the degree of parallelism and computational infrastructure are only
defined at runtime. From this perspective, the programmer task is arguably sim-
plified by completely detaching the structure and behaviour as originally intended,
and additionally increasing its consistency and programmability through the design
pattern characteristics.

Design Patterns and Algorithmic Skeletons: A Brief Concordance 9

- Visitor
Client Visitor
VisitConcretElementA(ConcreteElementA)
VisitConcretElementA(ConcreteElementB)
A
| |
ConcreteVisitorl ConcreteVisitor2

VisitConcretElementA(ConcreteElementA) VisitConcretElementA(ConcreteElementA)
VisitConcretElementA(ConcreteElementB) VisitConcretElementA(ConcreteElementB)

. . Element
ObjectStructure Accept(Visitor)
&
| |
ConcreteElementA ConcreteElementB
Accept(\ljsitor V) Accept(Visitor v)
OperationA() OperationB()

Fig. 5 Visitor Pattern (source: [6])

Visitor Pattern — a Behavioural Pattern

As introduced by Gamma et al. [6], the Visitor pattern separates structure from com-
putation by enabling new operations on existing object structures without modifying
the structures. Fig. 5 presents the generic solution of the Visitor pattern. The follow-
ing description is adapted from [6]:

Intent Represent an operation to be performed on the elements of an object struc-
ture. Visitor lets you define a new operation without changing the classes of the
elements on which it operates.

Motivation/Description ~ Represent an operation to be performed on the elements
of an object structure. Visitor lets you define a new operation without changing
the classes of the elements on which it operates.

Applicability The visitor pattern is useful in the following scenarios:

e An object structure contains many classes of objects with differing interfaces,
and you want to perform operations on these objects that depend on their
concrete classes.

e Many distinct and unrelated operations need to be performed on objects in
an object structure, and you want to avoid “polluting” their classes with these
operations. Visitor lets you keep related operations together by defining them
in one class. When the object structure is shared by many applications, use
Visitor to put operations in just those applications that need them.

e The classes defining the object structure rarely change, but you often want to
define new operations over the structure. Changing the object structure classes
requires redefining the interface to all visitors, which is potentially costly. If

10 Adriana E. Chis and Horacio Gonzéilez—Vélez

the object structure classes change often, then it’s probably better to define the
operations in those classes.

Participants (consult the pattern structure shown in Fig. 5)

Visitor declares a visit method for each of the concrete elements that need to
be traversed.

ConcreteVisitor implements each visit method declared in the Visitor. Usually,
each ConcreteVisitor keeps track of a local state for the visited concrete ele-
ment. The state is going to be updated while recursively traversing the struc-
ture.

Element declares an accept method which allows passing in a Visitor as a pa-
rameter

ConcreteElement declares an accept method which allows passing in a Visitor
as a parameter

ObjectStructure offer a mechanism to allow a visitor to visit the elements

Collaborations

e A client that uses the Visitor pattern must create a ConcreteVisitor object and
then traverse the object structure, visiting each element with the visitor.

e When an element is visited, it calls the Visitor operation that corresponds to
its class. The element supplies itself as an argument to this operation to let the
visitor access its state, if necessary.

Task Farm: Compound Structural

Let us present an example based on a task parallel algorithmic skeleton, the task
farm, as introduced in Section 3. We shall therefore formalise its description by
using the notation for design patterns.

Intent A Task Farm enables the creation of a variable number of independent tasks
to be allocated to distinct computational “worker” nodes by a central scheduling
node “farmer”. Farms can be nested recursively to enable a worker to become a
farmer of additional nodes.

Motivation Farms are especially useful to offload large numbers of independent
tasks to several nodes. Typically there are many more tasks than nodes. As nodes
can have different architectures (e.g. based on CPUs or GPUs) and, consequently,
distinct computational characteristics, the farmer requires to allocate tasks using
greedy or other heuristics scheduling mechanisms. Furthermore, computational
resources may not necessarily be dedicated, can be geographically distributed,
and have variable latencies, making the overall scheduling dynamic and complex.

Applicability Farms are particularly useful to offload embarrassingly-parallel
computations where the ordering and finish times of independent tasks are not
subject to hard constraints.

Design Patterns and Algorithmic Skeletons: A Brief Concordance 11

Participants

Farmer the process which divides and allocates tasks to workers.
Worker the processes which receive tasks and compute results based on given
function.

Collaborations

e A client that uses the Task Farm skeleton must create a Farmer object to create
an object structure for Workers. By traversing the object structure for each
Worker element, a Farmer assigns tasks to each Worker.

e When an element (Worker) completes a task (or a series of them), it calls the
Farmer operation that corresponds to its class.

We notice that if we perform a pairwise comparison that the visitor design pattern
and the task farm skeleton can be similar in nature. For instance, the intent of both
is to perform a series of tasks without altering the nature of the structure and both
have an architecture-independent approach. While the Task Farm deals with pro-
cessing heterogeneity by using scheduling mechanisms, the Visitor pattern makes
no assumption on the nature of the underlying infrastructure.

5 Conclusions

This initial mapping approach of patterns to skeletons has shown that, in principle,
parallel programming structures can be formally documented using a design pattern
notation to strengthen its nature and, most certainly, its readability .

With respect to the analysis of the mapping problem, the findings of this work
provide an initial idea to document large parallel programming endeavours. This
tacitly reinforces the notion that although parallel programming is complex, well-
documented parallel patterns can help to ease the burden.

From a performance standpoint, it is arguable that the overall performance of
algorithmic skeletons can be assumed to be unaltered as the design pattern notation
is mostly static. Furthermore, by assuming a skeleton is a pattern whose degree
of parallelism is determined at run-time, there is an intrinsic reinforcement to the
decoupling of computation from coordination.

However, it is a fact there are substantial avenues of research that need to be
explored to fully formalise a design pattern approach to skeletons.

Acknowledgements

The authors would like to acknowledge the contribution of the ICT COST Action
IC1406 “High-Performance Modelling and Simulation for Big Data Applications
(cHiPSet)” http://chipset—-cost.eu/.

12

Adriana E. Chis and Horacio Gonzéilez—Vélez

References

10.

. Alexander, C., Ishikawa, S., Silverstein, M.: A Pattern Language: Towns, Buildings, Construc-

tion. Oxford University Press, New York (1977)

. Asanovic, K., Bodik, R., Demmel, J., Keaveny, T., Keutzer, K., Kubiatowicz, J., Morgan, N.,

Patterson, D., Sen, K., Wawrzynek, J., Wessel, D., Yelick, K.: A view of the parallel computing
landscape. Commun. ACM 52(10), 56-67 (2009)

. Cole, M.: Algorithmic Skeletons: Structured Management of Parallel Computation. Research

Monographs in Parallel and Distributed Computing. MIT Press/Pitman, London (1989)

. Cole, M.: Bringing skeletons out of the closet: a pragmatic manifesto for skeletal parallel

programming. Parallel Computing 30(3), 389—-406 (2004)

. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: Abstraction and reuse of

object-oriented design. In: ECOOP’93, Lecture Notes in Computer Science, vol. 707, pp.
406-431. Springer, Kaiserslautern (1993)

. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable

Object-oriented Software. Addison-Wesley Longman, Boston (1995)

. Gonzalez-Vélez, H., Leyton, M.: A survey of algorithmic skeleton frameworks: high-level

structured parallel programming enablers. Software: Practice and Experience 40(12), 1135—
1160 (2010). DOI 10.1002/spe.1026

. Mattson, T.G., Sanders, B., Massingill, B.: Patterns for Parallel Programming. Software Pat-

terns Series. Addison-Wesley Professional, Boston (2004)

. Mittal, S., Vetter, J.S.: A survey of cpu-gpu heterogeneous computing techniques. ACM Com-

put. Surv. 47(4), 69:1-69:35 (2015)
Rabhi, FA., Gorlatch, S. (eds.): Patterns and Skeletons for Parallel and Distributed Comput-
ing. Springer, London (2003)

