
Evaluation of Cloud Systems?

Mihaela-Andreea VASILE1, George-Valentin IORDACHE1, Alexandru
TUDORICA1, and Florin POP1,2,∗

1University Politehnica of Bucharest, Computer Science Department, Faculty of
Automatic Control and Computers, Romania

2NationalInstituteforResearchandDevelopmentinInformatics(ICI), Bucharest, Romania
florin.pop@cs.pub.ro, mihaela.vasile@hpc.pub.ro

george.iordache@cs.pub.ro, alexandru.tudorica@cti.pub.ro
∗Corresponding Author

Abstract. Modelling and simulation represent suitable instruments for
evaluation of distributed system. These essential tools in science are used
in Cloud systems design and performance evaluation. The chapter cov-
ers the fundamental skills for a practitioner working in the field of Cloud
Systems to have, for the development of a correct methodology for the
evaluation using simulation of Cloud services and components. We con-
centrate on subjects related to tasks scheduling and resource allocation
with the focus on scalability and elasticity, the constraints imposed by
SLA and the use of CloudSim for performance evaluation of Cloud Sys-
tems. Several metrics used in modelling and simulation are presented in
this chapter.

Keywords: Resource Management, Task Scheduling, Cloud Comput-
ing, Service Level Agreement, CloudSim

1 Introduction

Cloud services are classified by NIST into three categories [1]: IaaS - Infrastruc-
ture as a Service, PaaS - Platform as a Service, SaaS - Software as a Service.

IaaS offers hardware infrastructure like switches, routers, servers, load bal-
ancers, firewalls, storage. Usually these resources are virtual resources if these
are bare metal versions, then the term used is Metal as a Service (MaaS). No-
table examples of IaaS are Amazon Web Services, Google Compute Engine, IBM
Softlayer (which has both IaaS and MaaS offerings).

PaaS goes beyond IaaS and offers a computing platform, which includes man-
aged operating system, execution environment, storage, database and HTTP
server. The platform is managed by the provider, this allows application devel-
opers to build applications without the complexity and inherent cost of managing
the underlying stack.

? This work was presented during the event cHiPSet Training School ”New Trends in
Modeling and Simulation in HPC Systems” Bucharest, Romania, 21-23 September
2016, supported by cHiPSet ICT COST Action IC1406.

2 M.A. VASILE, G:V. IORDACHE, A. TUDORICA, F. POP

SaaS compared to PaaS or IaaS offers an application that is completely man-
aged by the provider. Typical applications include databases, CRM software,
Git repositories, etc. The pricing is usually pay-per-use or subscription based.

Modern day Cloud computing has adapted to the service oriented architec-
ture by the means of microservices. Microservices are services that are isolated
from each other and communicate over a network in order to fulfill a goal. The
main difference between microservices and SOA is that the latter focuses on
reusability and integrating larger business applications, while the former focuses
on replacing an application with a set of services that can be replaced, updated
and scaled independently. Each microservice can be implemented in different
programming languages, databases and software environment thus increasing
the development speed. Also in contrast with SOA each microservice defines its
required resources. Microservices also pose the advantage that you can scale spe-
cific bottlenecks in your application, by assigning a different number of instances
to each microservice. Architecturally speaking, microservices should be designed
with fault in mind. If a microservice instance fails while processing a task, that
task gets assigned to another instance of the same microservice.

For high availability application the placement of these instances is con-
strained by locality restrictions, for example cloud service providers like Ama-
zon often provide multiple Availability Zones (AZs), especially designed for high
availability application such that they have a small chance of failing simultane-
ously. A microservice scheduler must be able to balance the number of instances
of a service across a number of AZs depending on the availability restrictions.
Other restrictions imposed on microservices might be: data locality, specific ma-
chine requirements like virtualization mode used, presence of a certain generation
of GPU or processor generation.

Scheduling microservices is very similar to the online multi-capacity bin pack-
ing problem, for which multiple algorithms exist. This problem was studied
for scheduling Virtual Machines (VMs) and is sometimes combined with of-
fline phases of the algorithm [2] for increased performance. For example Song et
al. [3] presents an online algorithm for scheduling VMs with using as few servers
as possible reaching a competitive ratio of 3/2. Another algorithm named Har-
monicMix [4] improves on the previous work, reaching a competitive ratio of
4/3, meaning that the number of bins necessary is only 4/3 bigger than offline
scheduling algorithms with infinite migration.

These algorithms make the assumption that all machines are equal, but in
order to optimize for the smallest price, we cant make such an assumption. The
nature of microservices, fault tolerance and scalability, make them able to be run
on a cluster of Amazon Spot instances. Amazon Spot instances are spare virtual
machine capacity auctioned off in real time by Amazon to the highest bidder.
Amazon Spot prices are usually 1/4-1/6 lower than their OnDemand counter-
parts, thus bringing huge cost savings. Each type of instance in each availability
zone has a dynamic price set by supply and demand. Thus some instance types
might become unavailable for periods of time. Qu et al. [5] has shown how you
can balance availability with price while using Amazon Spot Instances to run

Evaluation of Cloud Systems 3

web applications on them, by over provisioning resources depending on the avail-
ability constraints of the application.

This chapter presents the general features of cloud systems and services in
Section 2, the main evaluation metrics in Section 3, then in Section 4 address the
SLA issue for Cloud Systems. Section 5 presents the modeling of Cloud Systems
using CloudSim and the extension for it for scheduling algorithms.

2 General features of cloud systems and services

Cloud solutions allow users to access via Internet various types of resources such
as existing applications in the Cloud, frameworks that can be used for devel-
opment of custom built applications, access to Virtual Machines for installing
operating systems and also storage and sharing solutions.

Table 1. General features of cloud systems and services.

Feature Description

Availability degree to which a system is in a specified state.

Reliability power to remain functional with time without.

Efficiency the ratio of the useful work performed by a system to the total
energy expended or heat taken in.

Reusability the level to which a component may be used in a number of
systems or applications.

Interoperability the capability to integrate with different standards and tech-
nologies.

Adaptability the level of efficiency in adjusting a solution for the utilization
in different context.

Usability the quantity to which a Cloud service could be used by particular
consumers to gain certain aims with usefulness.

Modifiability the capability to make modifications to a component rapidly and
cost effectively.

Sustainability environmental effect of the Cloud service (usual carbon footprint
or even energy capable of the Cloud services).

Scalability the capability of a system to handle a growing amount of re-
sources and workloads.

Elasticity ”the degree to which a system is able to adapt to workload
changes by provisioning and de-provisioning resources in an au-
tonomic manner, such that at each point in time the available
resources match the current demand as closely as possible” [6].

The Cloud is now a significant choice for multiple types of users, common
individuals, scientists or technical users so large datasets are generated, and have
to be processed. The scheduling algorithms used in Clouds can be improved to
fit the new patterns of jobs and big data sets using hybrid approaches that will
consider independent tasks, tasks with dependencies, asymptotic scale requests

4 M.A. VASILE, G:V. IORDACHE, A. TUDORICA, F. POP

or smaller rates of arriving jobs [7], [8], [9]. All this algorithms are designed
considering the main features of Cloud systems and services, which are presented
in Table 1.

Fig. 1. Brief overview of Cloud Systems.

A brief overview of Cloud systems considering dimensions like type, model,
locality, stakeholders, comparison with other models, benefits and future is pre-
sented in Figure 1.

The recent Cloud computing paradigm was designed in order to provide end
users and businesses with various advantages such as: self-service provisioning,
broad network access, resource pooling , elasticity, measured service, pay per
use [1]. This approach is based on utility computing were we have infinite re-
sources (as much as you need) and a concrete billing model (e.g. hourly).

The main benefits of Cloud systems are represent by the possibility to use
high-scale / low-cost providers, by having any time / place access via a web
browser, rapid scalability (incremental cost and load sharing), and a great focus
on local IT systems.

We still have several concerns and open issues for Cloud systems, like per-
formance evaluation, reliability and interoperability assurance, SLA negotiation,
control of data and offered service parameters, no standard API (a mixture of
SOAP and REST and other standards), and many open issued about privacy,
security, and trust.

We classify the main characteristics and issues about Cloud system consid-
ering nonfunctional aspects, economic models and technological features. This
synthetic approach is presented in Figure 2.

Evaluation of Cloud Systems 5

Fig. 2. Cloud computing characteristics/issues.

3 Evaluation Metrics

The evaluation metrics are presented for all described features in the previous
section. A comprehensive and well described taxonomy of evaluation metrics
where presented in [10]. According with this evaluation we have basic perfor-
mance metrics (execution time, speedup, efficiency, scalability, elasticity, etc.),
Cloud capabilities (latency, throughput, bandwidth, recoverability, storage ca-
pacity, software tunning, etc.), and Cloud productivity (QoS, power demand,
cost of services, availability, productivity, SLA, security, etc.). The evaluations
metrics can be grouped by [11], [12], [13]:

– Availability metrics: ”flexibility, accuracy, response time”;
– Reliability metrics: ”service constancy, accuracy of service, fault tolerance,

maturity, recoverability”;
– Efficiency metrics: ”utilization of resource, ratio of waiting time, time be-

havior”;
– Reusability metrics: ”readability, coverage of variability, publicity”;
– Interoperability metrics: ”service Modularity, service interoperability, LISI

(Level of Information System Interoperability)”;
– Adaptability metrics: ”coverage of Variability, other performance metrics”;

6 M.A. VASILE, G:V. IORDACHE, A. TUDORICA, F. POP

– Usability metrics: ”operability, attractiveness, learnability”;

– Modifiability metric: ”MTTC (Mean Time To Change)”;

– Sustainability metrics: ”DPPE (Data Centre Performance per Energy) pa-
rameter, PUE (Power Usage Efficiency)”;

– Scalability metric: ”average of assigned resources among the requested re-
sources”;

– Elasticity metrics: ”boot time, suspend time, delete time, provision (or De-
ployment) time, total acquisition time”;

– Communication metrics: ”packet loss frequency, connection error rate, trans-
fer bit/Byte speed, transfer delay”;

– Computation metrics: ”CPU Load, benchmark OP (FLOP) rate, instance
efficiency (% CPU peak)”;

– Storage metrics: ”response time, latency, bandwidth, capacity”;

– Memory metrics: ”mean hit time, memory bit/Byte Speed, random memory
update rate, response time (ms)”;

– Time metrics: ”computation time, communication time”;

– Data Security metrics: ”Is SSL applicable, communication latency over SSL,
auditability, resistance to attacks”;

– Authentication metrics: ”meaning, sensitivity, effectiveness, confidentiality”.

Other evaluation metrics can be defined to evaluate task scheduling and re-
source allocation systems [14], [15], [16]. We highlights here several performance
evaluation metrics for a set of N jobs that is subject to a scheduling algorithm
or policy in a Cloud system:

AverageWaitT ime =
1

N

∑
j∈Jobs

(StartT imej − SubmitT imej).

AverageTurnaroundT ime =
1

N

∑
j∈Jobs

(EndTimej − SubmitT imej).

F ractionOfJobsTransferred =
NumberOfJobsMigrated

TotalNumberOfJobs
.

FractionDataV olumeTransferred =

∑
K (InputSizeK + OutputSizeK)∑
J (InputSizeJ + OutputSizeJ)

.

DataMigrationOverhead =
TotalDataMigrationT ime∑
J (EndTimeJ −QueueT imeJ)

.

These are several composed metrics defined for a task scheduling systems,
but we can define many other evaluation metrics, according with the defined
model and properties.

Evaluation of Cloud Systems 7

4 Performance and Service Level Agreement

One of the most important constraints of resource allocation techniques in the
Cloud is the level of client satisfaction. This level is described by the Service
Level Agreement (SLA) contract, which represents as a service level warranty
between the provider and the customer of the service. Usually, some of the
most important goals of the SLA contract are given by the necessity to have a
common language between the customer and the services provider, and to verify
the level of customer satisfaction during the use of the agreed services. An SLA
contract is designed and planned based on the objective requests related to the
cost reduction, efficiency increase and high performance, availability and highest
level of security of the provider Cloudbased services.

Designing and implementing a SLA contract is a usual open discussion, be-
cause it often involves complex simulations or difficult results to analyze and
implement. Our article has the purpose of presenting a survey of how Service
Level Agreements (SLAs) are specified in Cloud computing environments. One
of the methods for optimizing the resource allocation techniques is by satisfying
the specifications of the SLA. The analysis of the level of satisfaction of the
Service Level Agreement (SLA) and the improvement of the Quality of Service
(QoS) is very important when studying those methods for optimizing the Cloud
resource allocation.

When designing a Service Level Agreement contract in general we can discuss
about the following phases [17], [18], [19], [20], [21] (see Figure 3):

– The first phase in the design of an SLA contract is the SLA creation. During
this phase service providers propose a SLA contract based on their capa-
bilities and the contract contains SLA Offers. When discussing about the
service consumers we refer to the SLA requirements specifications.

– The second phase in the design of an SLA contract is the SLA discovery and
selection. During this phase, there exists a discovery of the offered services
from different service providers and the selection of the services that satisfy
both functional and non-functional requirements.

– The third phase in the design of an SLA contract is the SLA negotiation and
it represents the negotiation and renegotiation step between providers and
consumers.

– The fourth phase in the design of an SLA contract is the SLA monitoring
phase when the service is starting and is provided to the consumer. During
this phase the consumer monitors and validates the service characteristics
offered by the service provider.

– The fifth phase when discussing about an SLA contract is the SLA termina-
tion which occurs when the SLA contract expires or either the consumer or
the provider decide to end the agreement.

Cloud computing systems (or hosting datacenters) represent one of the main
research areas in the field of distributed systems. Utility computing, reliable data
storage, and infrastructure-independent computing are example applications of
such systems [22].

8 M.A. VASILE, G:V. IORDACHE, A. TUDORICA, F. POP

Fig. 3. SLA contract management phases.

Because adopting the Cloud services has various reasons such as lower costs
because of the economy of resources (in comparison with when the client has
to buy the necessary resources for example performant servers, etc.), trans-
ferring the responsibility when discussing the availability, maintenance, backup
and lower licensing prices of the applications that are in place in the Cloud [23].
On the other hand, the fact that when adopting the Cloud computing paradigm
with different purposes some of the service characteristics is transferred out of
the customer control to the Cloud computing services providers. For this rea-
son, there is a need for a contract (Service Level Agreement (SLA)) between the
customer and the provider [24].

In addition, one of the characteristics of the contract is represented by the
profit in the system, which depends on how the system can meet the SLA. (e.g.
average response time, number of jobs completed per unit of time, availability
of the resources in the system etc). The SLA contract usually specifies the con-
straints that need to be satisfied by the system in order to achieve the level of
client satisfaction and system quality of service (QoS) agreed in this contract.
Another way of thinking about a Service Level Agreement (SLA) contract is
that it represents a complex document that describes the parameters that need
to be satisfied in the time and at the values described by the range specified in
the Service Level Agreement.

In the following section of this article we present int three Tables the Cloud
SLAs which are drafted by Cloud providers. In this section we introduce Service
Level Agreement (SLA) and Service level ranking criterion (Table 2) based on
the JDN/CloudScreener/Cedexis U.S. Cloud Benchmark March 2016.

Evaluation of Cloud Systems 9

Table 2. Service Level Agreement and Service level ranking criterion.

AWS Google Microsoft Rackspace IBM Softlayer

Announced SLA 99,95% 99,95% 99,95% 99,90% 99,73%

Service level ranking 90.83 90.83 79,38 73,33 73,21

The service level index is based on different qualitative criterion such as the
geographical coverage (presence in the U.S. and outside of the U.S.), the num-
ber of certifications, the SLA, and the range of VM (the full ranking method-
ology is available on the JDN/CloudScreener/Cedexis U.S. Cloud Benchmark
website: http://www.journaldunet.com/us-Cloud-benchmark/) [25]. This arti-
cle presented a survey of the existing major Cloud providers and how Service
Level Agreements (SLAs) have been defined by these providers.

SLAs are very important in utility computing systems because they charac-
terize the various interactions between the Cloud providers and the clients or
consumers. The future research in SLA-oriented Cloud computing has to take
into account the following goals:

– the service management has to be based on the requested levels of service
characteristics; the characteristics that need to be taken into consideration
when designing a Service Level Agreement (SLA) are related both to the
computational risks and the service requirements;

– to identify the execution risks involved in the execution of applications, risks
that might have an impact on the levels of performance specified in the
Service Level Agreements (SLAs);

– there has to exist an equilibrium between the customer satisfaction and the
level of provider profit;

– there might be a need to model the different resource management designs
that are based both on the customers service demands and existing service
properties;

– there are various operations that need to be taken into consideration when
decinding to construct a Service Level Agreements contract such as: discover-
service provider, define-SLA elements, establish-agreement, monitor SLA vi-
olation, terminate-SLA and SLA violation control [17].

Currently, the automatic negotiation of a Service Level Agreement in Cloud
computing is still an open issue. Other open issues are scalability and heterogene-
ity of a service in Cloud computing, dynamic environmental changes, multiply
QoS parameters and SLA suitable for cross domains [17]. Finally, we need to
take into consideration the fact that the SLA needed in order to define the trust
and quality of services has to be based on an agreed framework that represents
a contract between consumer and provider about service terms such as: perfor-
mance, availability and billing [26]. All these challenges are still open and can
be explored in the future.

10 M.A. VASILE, G:V. IORDACHE, A. TUDORICA, F. POP

5 Modeling of Cloud systems using CloudSim

The CloudSim [27] Java toolkit allows the modeling of different entities in a
Cloud environment and simulate various scenarios: evaluate the configuration of
a Cloud System, resource allocation policies or scheduling algorithms. CloudSim
is an extensible framework (developed in CLOUDS Laboratory, Computer Sci-
ence and Software Engineering Department of the University of Melbourne)
due to its high modularity. The Cloud entities: data centers, hosts, VMs, jobs,
inter-host agreements or VM allocation policies are modeled as classes in dif-
ferent packages that can be interconnected or extended to enhance them with
additional functionality. A quick look over running CloudSim environments in
Eclipse is presented in Figure 4. CloudSim has the main benefit by having cloud
resource provisioning modules, energy-efficient management of data center re-
sources strategies and support for optimization.

Fig. 4. Quick look over running CloudSim environment in Eclipse.

In this section we analyze the required steps to extend the CloudSim frame-
work for implementing a custom scheduling algorithm and evaluate the simula-
tion results and algorithm performance.

Cloudlet represents the abstraction of a Job/Task. Some of its properties are
the length (computational requirements) and file size (IO), either for input or
output. For statistics computation, it stores the VM that executed it, the start
and finish execution times.

We will extend the Cloudlet by creating an additional object: Task that stores
application specific information, and is connected to a Cloudlet object using the
same id value.

Evaluation of Cloud Systems 11

1 pub l i c c l a s s Task {
// rank the cur rent task repor ted to the complete s e t o f

ta sk s
3 pub l i c double process ingRank ;

// rank the cur rent task repor ted to the complete s e t o f
ta sk s

5 pub l i c double ioRank ;
// connect the Task to a Cloudlet us ing t h i s a t t r i b u t e

7 pub l i c i n t id ;
pub l i c long l ength ;

9 pub l i c long f i l e S i z e ;
pub l i c long outputS ize ;

11 pub l i c i n t pesNumber ;
pub l i c long dead l ine ;

13 pub l i c long i o ;

Extend a Cloudlet using the Task class.

A VM object holds the properties of the underlying hardware, a link to the
physical host and the policy for submitting tasks on PEs. We can extend the
VM with the Resource object and add the specific attributes required by the
scheduling algorithms, in our case, we added the resource load attribute.

1 pub l i c c l a s s Resource {
// connect the Resource to a VM using t h i s a t t r i b u t e

3 p r i v a t e i n t id ;
// work load o f the cur rent VM

5 p r i v a t e i n t load ;
pub l i c ArrayList<Task> schedTasks = new ArrayList<Task>() ;

7 p r i v a t e i n t mips ;
p r i v a t e i n t ram ;

9

pub l i c Resource (i n t id , i n t load , i n t mips , i n t ram) {

Extend a VM using the Resource class.

The DatacenterBroker handles the allocation of Cloudlets on VMs using the
function submitCloudlets. The implementation of a scheduling algorithm can be
done by extending this class and overwriting the submitCloudlets function.

1 protec ted void submitCloudlets () {
i n t vmIndex = 0 ;

3 f o r (Cloudlet c l o u d l e t : g e t C l o u d l e t L i s t ()) {
Vm vm;

5 // i f user didn ’ t bind t h i s c l o u d l e t and i t has not been
executed yet

i f (c l o u d l e t . getVmId () == −1) {
7 vm = getVmsCreatedList () . get (vmIndex) ;

} e l s e { // submit to the s p e c i f i c vm
9 vm = VmList . getById (getVmsCreatedList () , c l o u d l e t .

getVmId ()) ;

12 M.A. VASILE, G:V. IORDACHE, A. TUDORICA, F. POP

i f (vm == n u l l) { // vm was not c rea ted
11 Log . p r in tL ine (CloudSim . c l o ck () + ” : ” + getName () +

” : Postponing execut ion o f c l o u d l e t ”
+ c l o u d l e t . g e tC loud l e t Id () + ” : bount VM not

a v a i l a b l e ”) ;
13 cont inue ;

}
15 }

17 Log . p r in tL ine (CloudSim . c l o ck () + ” : ” + getName () + ” :
Sending c l o u d l e t ”
+ c l o u d l e t . g e tC loud l e t Id () + ” to VM #” + vm. get Id ()

) ;
19 c l o u d l e t . setVmId (vm. get Id ()) ;

sendNow (getVmsToDatacentersMap () . get (vm. get Id ()) ,
CloudSimTags .CLOUDLET SUBMIT, c l o u d l e t) ;

21 c loud le t sSubmit ted++;
vmIndex = (vmIndex + 1) % getVmsCreatedList () . s i z e () ;

23 getCloud le tSubmit tedLi s t () . add (c l o u d l e t) ;
}

25

// remove submitted c l o u d l e t s from wait ing l i s t
27 f o r (Cloudlet c l o u d l e t : ge tCloud le tSubmit tedLi s t ()) {

g e t C l o u d l e t L i s t () . remove (c l o u d l e t) ;
29 }

}

Default scheduling in DatacenterBroker.

1 pub l i c c l a s s Scheduler extends DatacenterBroker implements
ISchedu l e r {

3 pub l i c s t a t i c SchedulingMethods method ;
pub l i c s t a t i c ArrayList<Task> ta sk s ;

5 pub l i c s t a t i c ArrayList<Resource> r e s o u r c e s ;

7 @Override
protec ted void submitCloudlets () {

9 switch (method) {
case Defau l t : de f au l tSchedu l e () ;

11 break ;
case SJF : s j f () ;

13 break ;
case Cluster ingSJF : c lu s t e r ingSJF () ;

15 break ;
}

17 }

Extend a DatacenterBroker using the Scheduler class.

Evaluation of Cloud Systems 13

C o l l e c t i o n s . s o r t (tasks , new Comparator<Task>() {
2

@Override
4 pub l i c i n t compare (Task o1 , Task o2) {

i n t r = (i n t) (o1 . l ength − o2 . l ength) ;
6 re turn r != 0 ? r : (i n t) (o1 . i o − o2 . i o) ;

}
8 }) ;

10 f o r (i n t i = 0 ; i < ta sk s . s i z e () ; i++) {
i n t id = task s . get (i) . id ;

12 Cloudlet c l o u d l e t = c l o u d l e t L i s t . get (id) ;
Vm vm;

14 // i f user didn ’ t bind t h i s c l o u d l e t and i t has not been
executed yet

i f (c l o u d l e t . getVmId () == −1) {
16 vm = getVmsCreatedList () . get (vmIndex) ;

} e l s e { // submit to the s p e c i f i c vm
18 vm = VmList . getById (getVmsCreatedList () , c l o u d l e t .

getVmId ()) ;
i f (vm == n u l l) { // vm was not c rea ted

20 Log . p r in tL ine (CloudSim . c l o ck () + ” : ” + getName () +
” : Postponing execut ion o f c l o u d l e t ”
+ c l o u d l e t . g e tC loud l e t Id () + ” : bount VM not

a v a i l a b l e ”) ;
22 cont inue ;

}
24 }

26 c l o u d l e t . setVmId (vm. get Id ()) ;
sendNow (getVmsToDatacentersMap () . get (vm. get Id ()) ,

CloudSimTags .CLOUDLET SUBMIT, c l o u d l e t) ;
28 c loud le t sSubmit ted++;

vmIndex = (vmIndex + 1) % getVmsCreatedList () . s i z e () ;
30 getCloud le tSubmit tedLi s t () . add (c l o u d l e t) ;

}
32

// remove submitted c l o u d l e t s from wait ing l i s t
34 f o r (Cloudlet c l o u d l e t : ge tCloud le tSubmit tedLi s t ()) {

Implement the SJF algorithm.

6 Conclusion

The new trends in modeling and simulation of Cloud Systems require perfor-
mance evaluation metrics with a high level of accuracy. We presented in this
chapter several feature of Cloud systems and services ans a set of evaluation
metrics. We included a practical example using CloudSim. which analyze the

14 M.A. VASILE, G:V. IORDACHE, A. TUDORICA, F. POP

required steps to extend the CloudSim framework for implementing a custom
scheduling algorithm and evaluate the simulation results.

Acknowledgment

The research presented in this paper is supported by the projects: DataWay :
Real-time Data Processing Platform for Smart Cities: Making sense of Big Data
- PN-II-RU-TE-2014-4-2731; MobiWay : Mobility Beyond Individualism: an Inte-
grated Platform for Intelligent Transportation Systems of Tomorrow - PN-II-PT-
PCCA-2013-4-0321; and cHiPSet : High-Performance Modelling and Simulation
for Big Data Applications, ICT COST Action IC1406.

We would like to thank the reviewers for their time and expertise, construc-
tive comments and valuable insight.

References

1. Mell, P., Grance, T.: The nist definition of cloud computing. Communications of
the ACM 53(6) (2010) 50

2. Leinberger, W., Karypis, G., Kumar, V.: Multi-capacity bin packing algorithms
with applications to job scheduling under multiple constraints. In: Parallel Process-
ing, 1999. Proceedings. 1999 International Conference on, IEEE (1999) 404–412

3. Song, W., Xiao, Z., Chen, Q., Luo, H.: Adaptive resource provisioning for the
cloud using online bin packing. IEEE Transactions on Computers 63(11) (2014)
2647–2660

4. Kamali, S.: Efficient bin packing algorithms for resource provisioning in the cloud.
In: Algorithmic Aspects of Cloud Computing. Springer (2016) 84–98

5. Qu, C., Calheiros, R.N., Buyya, R.: A reliable and cost-efficient auto-scaling system
for web applications using heterogeneous spot instances. Journal of Network and
Computer Applications 65 (2016) 167–180

6. Herbst, N.R., Kounev, S., Reussner, R.: Elasticity in cloud computing: What it
is, and what it is not. In: Proceedings of the 10th International Conference on
Autonomic Computing (ICAC 13). (2013) 23–27

7. Vasile, M.A., Pop, F., Tutueanu, R.I., Cristea, V., Ko lodziej, J.: Resource-aware
hybrid scheduling algorithm in heterogeneous distributed computing. Future Gen-
eration Computer Systems 51 (2015) 61–71

8. Vasile, M.A., Pop, F., Tutueanu, R.I., Cristea, V.: Hysarc2: hybrid scheduling al-
gorithm based on resource clustering in cloud environments. In: International Con-
ference on Algorithms and Architectures for Parallel Processing, Springer (2013)
416–425

9. Sfrent, A., Pop, F.: Asymptotic scheduling for many task computing in big data
platforms. Information Sciences 319 (2015) 71–91

10. Hwang, K., Bai, X., Shi, Y., Li, M., Chen, W.G., Wu, Y.: Cloud performance mod-
eling with benchmark evaluation of elastic scaling strategies. IEEE Transactions
on Parallel and Distributed Systems 27(1) (2016) 130–143

11. Bardsiri, A.K., Hashemi, S.M.: Qos metrics for cloud computing services evalua-
tion. International Journal of Intelligent Systems and Applications 6(12) (2014)
27

Evaluation of Cloud Systems 15

12. Kan, S.H.: Metrics and models in software quality engineering. Addison-Wesley
Longman Publishing Co., Inc. (2002)

13. Iosup, A., Ostermann, S., Yigitbasi, M.N., Prodan, R., Fahringer, T., Epema,
D.: Performance analysis of cloud computing services for many-tasks scientific
computing. IEEE Transactions on Parallel and Distributed systems 22(6) (2011)
931–945

14. Topcuoglu, H., Hariri, S., Wu, M.y.: Performance-effective and low-complexity
task scheduling for heterogeneous computing. IEEE transactions on parallel and
distributed systems 13(3) (2002) 260–274

15. Feitelson, D.G., Rudolph, L.: Metrics and benchmarking for parallel job scheduling.
In: Workshop on Job Scheduling Strategies for Parallel Processing, Springer (1998)
1–24

16. Pop, F., Cristea, V., Bessis, N., Sotiriadis, S.: Reputation guided genetic schedul-
ing algorithm for independent tasks in inter-clouds environments. In: Advanced
Information Networking and Applications Workshops (WAINA), 2013 27th Inter-
national Conference on, IEEE (2013) 772–776

17. Wu, L., Buyya, R.: Service level agreement (sla) in utility computing systems. IGI
Global (2012)

18. Debusmann, M., Keller, A.: Sla-driven management of distributed systems us-
ing the common information model. In: Integrated Network Management VIII.
Springer (2003) 563–576

19. Alhamad, M., Dillon, T., Chang, E.: Sla-based trust model for cloud computing. In:
Network-Based Information Systems (NBiS), 2010 13th International Conference
on, IEEE (2010) 321–324

20. Venticinque, S., Aversa, R., Di Martino, B., Rak, M., Petcu, D.: A cloud agency for
sla negotiation and management. In: European Conference on Parallel Processing,
Springer (2010) 587–594

21. Sahai, A., Machiraju, V., Sayal, M., Van Moorsel, A., Casati, F.: Automated sla
monitoring for web services. In: International Workshop on Distributed Systems:
Operations and Management, Springer (2002) 28–41

22. Goudarzi, H., Ghasemazar, M., Pedram, M.: Sla-based optimization of power
and migration cost in cloud computing. In: 2012 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012). (May 2012)
172–179

23. Goudarzi, H., Pedram, M.: Multi-dimensional sla-based resource allocation for
multi-tier cloud computing systems. In: Cloud Computing (CLOUD), 2011 IEEE
International Conference on, IEEE (2011) 324–331

24. Dastjerdi, A.V., Tabatabaei, S.G.H., Buyya, R.: A dependency-aware ontology-
based approach for deploying service level agreement monitoring services in cloud.
Software: Practice and Experience 42(4) (2012) 501–518

25. CCMBenchmark: Jdn, cloudscreener, cedexis u.s. cloud benchmark website, 2016,
http://www.journaldunet.com/us-cloud-benchmark

26. Alhamad, M., Dillon, T., Chang, E.: Conceptual sla framework for cloud comput-
ing. In: 4th IEEE International Conference on Digital Ecosystems and Technolo-
gies, IEEE (2010) 606–610

27. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A., Buyya, R.: Cloudsim:
a toolkit for modeling and simulation of cloud computing environments and evalu-
ation of resource provisioning algorithms. Software: Practice and Experience 41(1)
(2011) 23–50

