Forecasting Cryptocurrency Value by Sentiment Analysis


Case Study Team

Coordinators

Id Name Institution (type*) Related WG Role in the team
1  Aleš Zamuda  University of Maribor, SI  WG4 Coordinator
2 Andrea Bracciali University of Stirling, UK  (A) WG3 Vice-Coordinator

Team Members

Id Name Institution (type*) Related WG
1 Vasco Amaral Nova University of Lisbon, PT (A) WG2
2 Joana Matos Dias   Universidade de Coimbra, PT (A) WG4
3 José Covelo García  Luckia Gaming Group, ES (I) WG4
4 Horacio Gonzalez-Velez National College of Ireland, IE (A) WG1
5 Miguel Goulão Universidade Nova de Lisboa, PT (A) WG4
6 Mariam Kiran ESNet, UK (I) WG4
7  Roman Šenkeřík  University Tomas-Bata, Zlin CZ (A) WG4
8 Katarzyna Wegrzyn-Wolska ESIGETEL, FR (A) WG4
9  Juan C. Burguillo-Rial (A) Universidade de Vigo, ES (A) WG4

*A-academia, I-industry


Addressed Problem

Aim: The aim of the case study is to find the correlations between sentiments and blockchain technologies.

Topics: Text mining, Sentiment analysis, Blockchain technologies for e-currencies, ICO – Initial Coin Offerings

Main Problem: Forecasting crypto-currency assets’ value


Existing Solution(-s) (Models, Tools)

TBC


 Proposed Solution(-s) (Models, Tools)

TBC


Practical Scenarios (-s)

TBC


Supplementary Material

TBC